Temporal and spatial variability of stream water chemistry on Subantarctic Marion Island

Concentrations of major ions in stream water from the Soft Plume River on Subantarctic Marion Island were measured. During the annual relief voyage, samples were collected daily over a 16-day period (21 April–6 May 2015) from three sites along the stream to better understand temporal and spatial var...

Full description

Bibliographic Details
Main Authors: M.-J. Stowe, David William Hedding, Frank D. Eckardt, Werner Nel
Format: Article
Language:English
Published: Norwegian Polar Institute 2019-12-01
Series:Polar Research
Subjects:
Online Access:https://polarresearch.net/index.php/polar/article/view/3356/10014
Description
Summary:Concentrations of major ions in stream water from the Soft Plume River on Subantarctic Marion Island were measured. During the annual relief voyage, samples were collected daily over a 16-day period (21 April–6 May 2015) from three sites along the stream to better understand temporal and spatial variability of stream water chemistry on the island. The chemical composition of the stream is dominated by the sea salts Na+ and Cl−. Mean solute concentrations for Na+ and Cl− are 7 ± 0.58 and 12.5 ± 0.84 mg/L, respectively. The mean molar Na:Cl ratio for all samples is 0.86 ± 0.05, with a range from 0.71 to 0.99 (n = 47), and there is a strong, significant positive correlation between Na+ and Cl− concentrations (r = 0.80; p < 0.001). These values are consistent with previous studies from Marion Island and other Subantarctic islands. Temporal variation in ion concentrations was small. The largest detected change was a decrease in most solute concentrations that coincided with two precipitation events. This decrease was largest at the highest altitude and the shallowest site, suggesting that there was more rainfall at this location. These findings confirm the dominance of the surrounding ocean as the main source of the island’s stream water chemistry and illustrate spatiotemporal patterns that provide an insight into mechanisms affecting their composition on Subantarctic Marion Island.
ISSN:1751-8369