Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals
This paper considers a neuro-fuzzy based identification problem for Wiener model with controlled autoregressive moving average noise. The separable signal is applied to decouple the dynamic linear part and the static nonlinear part, and the correlation analysis method is adopted to estimate the para...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9063685/ |
id |
doaj-d9a56a3eb7f04ceda58955feb2f1e846 |
---|---|
record_format |
Article |
spelling |
doaj-d9a56a3eb7f04ceda58955feb2f1e8462021-03-30T03:16:12ZengIEEEIEEE Access2169-35362020-01-018670476705810.1109/ACCESS.2020.29839699063685Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable SignalsBensheng Lyu0Li Jia1https://orcid.org/0000-0002-5566-9209Feng Li2Department of Automation, College of Mechatronics Engineering and Automation, Shanghai University, Shanghai, ChinaDepartment of Automation, College of Mechatronics Engineering and Automation, Shanghai University, Shanghai, ChinaCollege of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, ChinaThis paper considers a neuro-fuzzy based identification problem for Wiener model with controlled autoregressive moving average noise. The separable signal is applied to decouple the dynamic linear part and the static nonlinear part, and the correlation analysis method is adopted to estimate the parameters of the linear part. To improve the convergence rate of generalized extended stochastic gradient (GESG) algorithm, a generalized extended stochastic gradient algorithm with a forgetting factor is derived for estimating the parameters of the nonlinear part and the parameters of noise model. Examples results verify the effectiveness of the proposed method.https://ieeexplore.ieee.org/document/9063685/Wiener modelseparable signalcorrelation analysisstochastic gradient |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bensheng Lyu Li Jia Feng Li |
spellingShingle |
Bensheng Lyu Li Jia Feng Li Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals IEEE Access Wiener model separable signal correlation analysis stochastic gradient |
author_facet |
Bensheng Lyu Li Jia Feng Li |
author_sort |
Bensheng Lyu |
title |
Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals |
title_short |
Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals |
title_full |
Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals |
title_fullStr |
Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals |
title_full_unstemmed |
Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals |
title_sort |
parameter estimation of neuro-fuzzy wiener model with colored noise using separable signals |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2020-01-01 |
description |
This paper considers a neuro-fuzzy based identification problem for Wiener model with controlled autoregressive moving average noise. The separable signal is applied to decouple the dynamic linear part and the static nonlinear part, and the correlation analysis method is adopted to estimate the parameters of the linear part. To improve the convergence rate of generalized extended stochastic gradient (GESG) algorithm, a generalized extended stochastic gradient algorithm with a forgetting factor is derived for estimating the parameters of the nonlinear part and the parameters of noise model. Examples results verify the effectiveness of the proposed method. |
topic |
Wiener model separable signal correlation analysis stochastic gradient |
url |
https://ieeexplore.ieee.org/document/9063685/ |
work_keys_str_mv |
AT benshenglyu parameterestimationofneurofuzzywienermodelwithcolorednoiseusingseparablesignals AT lijia parameterestimationofneurofuzzywienermodelwithcolorednoiseusingseparablesignals AT fengli parameterestimationofneurofuzzywienermodelwithcolorednoiseusingseparablesignals |
_version_ |
1724183804801712128 |