Summary: | The paper presents an intelligent real-time slope surface deformation monitoring system based on binocular stereo-vision. To adapt the system to field slope monitoring, a design scheme of concentric marking point is proposed. Techniques including Zernike moment edge extraction, the least squares method, and k-means clustering are used to design a sub-pixel precision localization method for marker images. This study is mostly focused on the tracking accuracy of objects in multi-frame images obtained from a binocular camera. For this purpose, the Upsampled Cross Correlation (UCC) sub-pixel template matching technique is employed to improve the spatial-temporal contextual (STC) target-tracking algorithm. As a result, the tracking accuracy is improved to the sub-pixel level while keeping the STC tracking algorithm at high speed. The performance of the proposed vision monitoring system has been well verified through laboratory tests.
|