Consimilarity and quaternion matrix equations AX −^X B = C, X − A^X B = C
L. Huang [Consimilarity of quaternion matrices and complex matrices, Linear Algebra Appl. 331(2001) 21–30] gave a canonical form of a quaternion matrix with respect to consimilarity transformationsA ↦ ˜S−1AS in which S is a nonsingular quaternion matrix and h = a + bi + cj + dk ↦ ˜h := a − bi + cj −...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2014-02-01
|
Series: | Special Matrices |
Subjects: | |
Online Access: | https://doi.org/10.2478/spma-2014-0018 |