Non‐biofilm‐forming commensal Staphylococcus epidermidis isolates produce biofilm in the presence of trypsin

Abstract Epidemiological studies comparing clinical and commensal Staphylococcus epidermidis isolates suggest that biofilm formation is a discriminant biomarker. A study showed that four non‐biofilm‐forming clinical S. epidermidis isolates could form an induced biofilm by trypsin treatment, suggesti...

Full description

Bibliographic Details
Main Authors: Sergio Martínez‐García, Silvestre Ortega‐Peña, María De Jesús De Haro‐Cruz, Ma. Guadalupe Aguilera‐Arreola, María Dolores Alcántar‐Curiel, Gabriel Betanzos‐Cabrera, Janet Jan‐Roblero, Sonia Mayra Pérez‐Tapia, Sandra Rodríguez‐Martínez, Mario E. Cancino‐Diaz, Juan C. Cancino‐Diaz
Format: Article
Language:English
Published: Wiley 2019-10-01
Series:MicrobiologyOpen
Subjects:
Online Access:https://doi.org/10.1002/mbo3.906
Description
Summary:Abstract Epidemiological studies comparing clinical and commensal Staphylococcus epidermidis isolates suggest that biofilm formation is a discriminant biomarker. A study showed that four non‐biofilm‐forming clinical S. epidermidis isolates could form an induced biofilm by trypsin treatment, suggesting that S. epidermidis can form biofilms in a protease‐independent way and in a trypsin‐induced way. In this study, the trypsin capacity to induce biofilm formation was evaluated in non‐biofilm‐forming S. epidermidis isolates (n = 133) in order to support this mechanism and to establish the importance of total biofilms (meaning the sum of protease‐independent biofilm and trypsin‐induced biofilm). Staphylococcus epidermidis isolates from ocular infections (OI; n = 24), prosthetic joint infections (PJI; n = 64), and healthy skin (HS‐1; n = 100) were screened for protease‐independent biofilm formation according to Christensen's method. The result was that there are significant differences (p < .0001) between clinical (43.2%) and commensal (17%) protease‐independent biofilm producers. Meanwhile, non‐biofilm‐forming isolates were treated with trypsin, and biofilm formation was evaluated by the same method. The number of commensal trypsin‐induced biofilm producers significantly increased from 17% to 79%. In contrast, clinical isolates increased from 43.2% to 72.7%. The comparison between clinical and commensal total biofilm yielded no significant differences (p = .392). A similar result was found when different isolation sources were compared (OI vs. HS‐1 and PJI vs. HS‐1). The genotype icaA−/aap+ was associated with the trypsin‐induced biofilm phenotype; however, no correlation was observed between aap mRNA expression and the level of trypsin‐induced biofilm phenotype. Studying another group of commensal S. epidermidis non‐biofilm‐forming isolates (HS‐2; n = 139) from different body sites, it was found that 70 isolates (60.3%) formed trypsin‐induced biofilms. In conclusion, trypsin is capable of inducing biofilm production in non‐biofilm‐forming commensal S. epidermidis isolates with the icaA−/aap+ genotype, and there is no significant difference in total biofilms when comparing clinical and commensal isolates, suggesting that total biofilms are not a discriminant biomarker.
ISSN:2045-8827