Detection of the Minute Variations of Total Suspended Matter in Strong Tidal Waters Based on GaoFen-4 Satellite Data

Hangzhou Bay (HZB) is the largest macro-tidal bay in China, where suspended sediment concentrations are significantly modulated by tidal oscillations. This makes it an ideal area for the study of the impact of tide on temporal–spatial variation in suspended sediment. The GaoFen-4 (GF-4) satellite is...

Full description

Bibliographic Details
Main Authors: Qiong Chen, Bin Zhou, Zhifeng Yu, Jie Wu, Shilin Tang
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/7/1339
Description
Summary:Hangzhou Bay (HZB) is the largest macro-tidal bay in China, where suspended sediment concentrations are significantly modulated by tidal oscillations. This makes it an ideal area for the study of the impact of tide on temporal–spatial variation in suspended sediment. The GaoFen-4 (GF-4) satellite is the first high-resolution geosynchronous orbiting satellite of China. It exhibits the unique advantages of capturing minute variations and finer details of total suspended matter (TSM) due to the enhancement in spatial resolution (50 m) and observation time interval (20 s). In this study, TSM concentration of the HZB was retrieved based on the GF-4 satellite. The spatial distribution and minute variations of TSM concentration under the ebb tide from 7:30 to 7:40 a.m. on 28 August 2017, were analyzed. The results showed that the average TSM concentration inside HZB was (371.8 ± 1.8) mg/L. There was a linearly increasing trend of TSM concentration at ebb tide, with an increment of (3.96 ± 0.31) (mg/L)/min, and a more significant increase was observed in the high TSM areas. This increase in TSM concentration was associated with both the bottom topography and tide processes. The tidal potential energy generated by the tidal range and the strong shear stress generated by the high current velocity both led to the re-suspension of the sedimentary particles, which affected the variation of TSM concentration. In addition, the influence of bottom topography changed the intensity of re-suspension and also affected the distribution of TSM concentration in HZB.
ISSN:2072-4292