Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links
This article proposes a lightweight biometric sensing system using ubiquitous narrowband radio frequency (RF) links for path-dependent walker classification. The fluctuated received signal strength (RSS) sequence generated by human motion is used for feature representation. To capture the most discr...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-12-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/17/12/2815 |
id |
doaj-d94b76334c0c4df98c37f6497d9fbe2a |
---|---|
record_format |
Article |
spelling |
doaj-d94b76334c0c4df98c37f6497d9fbe2a2020-11-25T00:09:01ZengMDPI AGSensors1424-82202017-12-011712281510.3390/s17122815s17122815Lightweight Biometric Sensing for Walker Classification Using Narrowband RF LinksTong Liu0Zhuo-qian Liang1Department of Electronics Engineering, Huizhou University, Huizhou 516001, ChinaCollege of Information Science and Technology, Jinan University, Guangzhou 510632, ChinaThis article proposes a lightweight biometric sensing system using ubiquitous narrowband radio frequency (RF) links for path-dependent walker classification. The fluctuated received signal strength (RSS) sequence generated by human motion is used for feature representation. To capture the most discriminative characteristics of individuals, a three-layer RF sensing network is organized for building multiple sampling links at the most common heights of upper limbs, thighs, and lower legs. The optimal parameters of sensing configuration, such as the height of link location and number of fused links, are investigated to improve sensory data distinctions among subjects, and the experimental results suggest that the synergistic sensing by using multiple links can contribute a better performance. This is the new consideration of using RF links in building a biometric sensing system. In addition, two types of classification methods involving vector quantization (VQ) and hidden Markov models (HMMs) are developed and compared for closed-set walker recognition and verification. Experimental studies in indoor line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios are conducted to validate the proposed method.https://www.mdpi.com/1424-8220/17/12/2815biometric sensingwalker classificationubiquitous RF links |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tong Liu Zhuo-qian Liang |
spellingShingle |
Tong Liu Zhuo-qian Liang Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links Sensors biometric sensing walker classification ubiquitous RF links |
author_facet |
Tong Liu Zhuo-qian Liang |
author_sort |
Tong Liu |
title |
Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links |
title_short |
Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links |
title_full |
Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links |
title_fullStr |
Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links |
title_full_unstemmed |
Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links |
title_sort |
lightweight biometric sensing for walker classification using narrowband rf links |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2017-12-01 |
description |
This article proposes a lightweight biometric sensing system using ubiquitous narrowband radio frequency (RF) links for path-dependent walker classification. The fluctuated received signal strength (RSS) sequence generated by human motion is used for feature representation. To capture the most discriminative characteristics of individuals, a three-layer RF sensing network is organized for building multiple sampling links at the most common heights of upper limbs, thighs, and lower legs. The optimal parameters of sensing configuration, such as the height of link location and number of fused links, are investigated to improve sensory data distinctions among subjects, and the experimental results suggest that the synergistic sensing by using multiple links can contribute a better performance. This is the new consideration of using RF links in building a biometric sensing system. In addition, two types of classification methods involving vector quantization (VQ) and hidden Markov models (HMMs) are developed and compared for closed-set walker recognition and verification. Experimental studies in indoor line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios are conducted to validate the proposed method. |
topic |
biometric sensing walker classification ubiquitous RF links |
url |
https://www.mdpi.com/1424-8220/17/12/2815 |
work_keys_str_mv |
AT tongliu lightweightbiometricsensingforwalkerclassificationusingnarrowbandrflinks AT zhuoqianliang lightweightbiometricsensingforwalkerclassificationusingnarrowbandrflinks |
_version_ |
1725413373329276928 |