Adaptive Control Design with Assigned Tracking Accuracy for a Class of Nonlinearly Parameterized Input-Delayed Systems
This paper addresses the adaptive control problem of a class of nonlinear systems with unknown parameters and input delay, and the tracking accuracy of the controlled system is assigned a priori. The Pade approximation method is introduced to deal with the problem from the input delay. By creating a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2019/8602719 |
Summary: | This paper addresses the adaptive control problem of a class of nonlinear systems with unknown parameters and input delay, and the tracking accuracy of the controlled system is assigned a priori. The Pade approximation method is introduced to deal with the problem from the input delay. By creating a group of nonnegative functions, an appropriate controller is designed with the backstepping technology. It is shown that under the obtained controller, the boundedness of all the closed-loop signals is guaranteed, and the tracking error especially can converge to the accuracy assigned a priori. Finally, a simulation example is given to verify the effectiveness of the proposed scheme. |
---|---|
ISSN: | 1024-123X 1563-5147 |