Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics

Supplementing the holographic Einstein–Maxwell-dilaton model of [1,2] by input of lattice QCD data for 2+1 flavors and physical quark masses for the equation of state and quark number susceptibility at zero baryo-chemical potential we explore the resulting phase diagram over the temperature-chemical...

Full description

Bibliographic Details
Main Authors: J. Knaute, R. Yaresko, B. Kämpfer
Format: Article
Language:English
Published: Elsevier 2018-03-01
Series:Physics Letters B
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269318300613
id doaj-d905dc362c97486a950c773905c8b6e3
record_format Article
spelling doaj-d905dc362c97486a950c773905c8b6e32020-11-24T21:31:53ZengElsevierPhysics Letters B0370-26931873-24452018-03-01778C41942510.1016/j.physletb.2018.01.053Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamicsJ. Knaute0R. Yaresko1B. Kämpfer2Helmholtz-Zentrum Dresden-Rossendorf, POB 51 01 19, 01314 Dresden, GermanyHelmholtz-Zentrum Dresden-Rossendorf, POB 51 01 19, 01314 Dresden, GermanyHelmholtz-Zentrum Dresden-Rossendorf, POB 51 01 19, 01314 Dresden, GermanySupplementing the holographic Einstein–Maxwell-dilaton model of [1,2] by input of lattice QCD data for 2+1 flavors and physical quark masses for the equation of state and quark number susceptibility at zero baryo-chemical potential we explore the resulting phase diagram over the temperature-chemical potential plane. A first-order phase transition sets in at a temperature of about 112 MeV and a baryo-chemical potential of 612 MeV. We estimate the accuracy of the critical point position in the order of approximately 5–8% by considering parameter variations and different low-temperature asymptotics for the second-order quark number susceptibility. The critical pressure as a function of the temperature has a positive slope, i.e. the entropy per baryon jumps up when crossing the phase border line from larger values of temperature/baryo-chemical potential, thus classifying the phase transition as a gas–liquid one. The updated holographic model exhibits in- and outgoing isentropes in the vicinity of the first-order phase transition.http://www.sciencedirect.com/science/article/pii/S0370269318300613Gravity dualHolographyQuark–gluon plasmaCritical point
collection DOAJ
language English
format Article
sources DOAJ
author J. Knaute
R. Yaresko
B. Kämpfer
spellingShingle J. Knaute
R. Yaresko
B. Kämpfer
Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics
Physics Letters B
Gravity dual
Holography
Quark–gluon plasma
Critical point
author_facet J. Knaute
R. Yaresko
B. Kämpfer
author_sort J. Knaute
title Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics
title_short Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics
title_full Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics
title_fullStr Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics
title_full_unstemmed Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics
title_sort holographic qcd phase diagram with critical point from einstein–maxwell-dilaton dynamics
publisher Elsevier
series Physics Letters B
issn 0370-2693
1873-2445
publishDate 2018-03-01
description Supplementing the holographic Einstein–Maxwell-dilaton model of [1,2] by input of lattice QCD data for 2+1 flavors and physical quark masses for the equation of state and quark number susceptibility at zero baryo-chemical potential we explore the resulting phase diagram over the temperature-chemical potential plane. A first-order phase transition sets in at a temperature of about 112 MeV and a baryo-chemical potential of 612 MeV. We estimate the accuracy of the critical point position in the order of approximately 5–8% by considering parameter variations and different low-temperature asymptotics for the second-order quark number susceptibility. The critical pressure as a function of the temperature has a positive slope, i.e. the entropy per baryon jumps up when crossing the phase border line from larger values of temperature/baryo-chemical potential, thus classifying the phase transition as a gas–liquid one. The updated holographic model exhibits in- and outgoing isentropes in the vicinity of the first-order phase transition.
topic Gravity dual
Holography
Quark–gluon plasma
Critical point
url http://www.sciencedirect.com/science/article/pii/S0370269318300613
work_keys_str_mv AT jknaute holographicqcdphasediagramwithcriticalpointfromeinsteinmaxwelldilatondynamics
AT ryaresko holographicqcdphasediagramwithcriticalpointfromeinsteinmaxwelldilatondynamics
AT bkampfer holographicqcdphasediagramwithcriticalpointfromeinsteinmaxwelldilatondynamics
_version_ 1725959518548918272