Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics
Supplementing the holographic Einstein–Maxwell-dilaton model of [1,2] by input of lattice QCD data for 2+1 flavors and physical quark masses for the equation of state and quark number susceptibility at zero baryo-chemical potential we explore the resulting phase diagram over the temperature-chemical...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-03-01
|
Series: | Physics Letters B |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0370269318300613 |
id |
doaj-d905dc362c97486a950c773905c8b6e3 |
---|---|
record_format |
Article |
spelling |
doaj-d905dc362c97486a950c773905c8b6e32020-11-24T21:31:53ZengElsevierPhysics Letters B0370-26931873-24452018-03-01778C41942510.1016/j.physletb.2018.01.053Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamicsJ. Knaute0R. Yaresko1B. Kämpfer2Helmholtz-Zentrum Dresden-Rossendorf, POB 51 01 19, 01314 Dresden, GermanyHelmholtz-Zentrum Dresden-Rossendorf, POB 51 01 19, 01314 Dresden, GermanyHelmholtz-Zentrum Dresden-Rossendorf, POB 51 01 19, 01314 Dresden, GermanySupplementing the holographic Einstein–Maxwell-dilaton model of [1,2] by input of lattice QCD data for 2+1 flavors and physical quark masses for the equation of state and quark number susceptibility at zero baryo-chemical potential we explore the resulting phase diagram over the temperature-chemical potential plane. A first-order phase transition sets in at a temperature of about 112 MeV and a baryo-chemical potential of 612 MeV. We estimate the accuracy of the critical point position in the order of approximately 5–8% by considering parameter variations and different low-temperature asymptotics for the second-order quark number susceptibility. The critical pressure as a function of the temperature has a positive slope, i.e. the entropy per baryon jumps up when crossing the phase border line from larger values of temperature/baryo-chemical potential, thus classifying the phase transition as a gas–liquid one. The updated holographic model exhibits in- and outgoing isentropes in the vicinity of the first-order phase transition.http://www.sciencedirect.com/science/article/pii/S0370269318300613Gravity dualHolographyQuark–gluon plasmaCritical point |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
J. Knaute R. Yaresko B. Kämpfer |
spellingShingle |
J. Knaute R. Yaresko B. Kämpfer Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics Physics Letters B Gravity dual Holography Quark–gluon plasma Critical point |
author_facet |
J. Knaute R. Yaresko B. Kämpfer |
author_sort |
J. Knaute |
title |
Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics |
title_short |
Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics |
title_full |
Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics |
title_fullStr |
Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics |
title_full_unstemmed |
Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics |
title_sort |
holographic qcd phase diagram with critical point from einstein–maxwell-dilaton dynamics |
publisher |
Elsevier |
series |
Physics Letters B |
issn |
0370-2693 1873-2445 |
publishDate |
2018-03-01 |
description |
Supplementing the holographic Einstein–Maxwell-dilaton model of [1,2] by input of lattice QCD data for 2+1 flavors and physical quark masses for the equation of state and quark number susceptibility at zero baryo-chemical potential we explore the resulting phase diagram over the temperature-chemical potential plane. A first-order phase transition sets in at a temperature of about 112 MeV and a baryo-chemical potential of 612 MeV. We estimate the accuracy of the critical point position in the order of approximately 5–8% by considering parameter variations and different low-temperature asymptotics for the second-order quark number susceptibility. The critical pressure as a function of the temperature has a positive slope, i.e. the entropy per baryon jumps up when crossing the phase border line from larger values of temperature/baryo-chemical potential, thus classifying the phase transition as a gas–liquid one. The updated holographic model exhibits in- and outgoing isentropes in the vicinity of the first-order phase transition. |
topic |
Gravity dual Holography Quark–gluon plasma Critical point |
url |
http://www.sciencedirect.com/science/article/pii/S0370269318300613 |
work_keys_str_mv |
AT jknaute holographicqcdphasediagramwithcriticalpointfromeinsteinmaxwelldilatondynamics AT ryaresko holographicqcdphasediagramwithcriticalpointfromeinsteinmaxwelldilatondynamics AT bkampfer holographicqcdphasediagramwithcriticalpointfromeinsteinmaxwelldilatondynamics |
_version_ |
1725959518548918272 |