Coupled fixed point results in cone metric spaces for <inline-formula> <graphic file="1687-1812-2011-27-i1.gif"/> </inline-formula>-compatible mappings
<p>Abstract</p> <p>In this paper, we introduce the concepts of <inline-formula> <graphic file="1687-1812-2011-27-i1.gif"/> </inline-formula>-compatible mappings, b-coupled coincidence point and b-common coupled fixed point for mappings <it>F</it...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2011-01-01
|
Series: | Fixed Point Theory and Applications |
Subjects: | |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2011/1/27 |
Summary: | <p>Abstract</p> <p>In this paper, we introduce the concepts of <inline-formula> <graphic file="1687-1812-2011-27-i1.gif"/> </inline-formula>-compatible mappings, b-coupled coincidence point and b-common coupled fixed point for mappings <it>F</it>, <it>G </it>: <it>X </it>× <it>X </it>→ <it>X</it>, where (<it>X</it>, <it>d</it>) is a cone metric space. We establish b-coupled coincidence and b-common coupled fixed point theorems in such spaces. The presented theorems generalize and extend several well-known comparable results in the literature, in particular the recent results of Abbas et al. [Appl. Math. Comput. <b>217</b>, 195-202 (2010)]. Some examples are given to illustrate our obtained results. An application to the study of existence of solutions for a system of non-linear integral equations is also considered.</p> <p> <b>2010 Mathematics Subject Classifications</b>: 54H25; 47H10.</p> |
---|---|
ISSN: | 1687-1820 1687-1812 |