High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia

Autologous chimeric antigen receptor-modified (CAR) T cells with specificity for CD19 showed potent antitumor efficacy in clinical trials against relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL). Contrary to T cells, natural killer (NK) cells kill their targets in a non-antigen-sp...

Full description

Bibliographic Details
Main Authors: Stephan Müller, Tobias Bexte, Veronika Gebel, Franziska Kalensee, Eva Stolzenberg, Jessica Hartmann, Ulrike Koehl, Axel Schambach, Winfried S. Wels, Ute Modlich, Evelyn Ullrich
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-01-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fimmu.2019.03123/full
id doaj-d8dae0285dea4bba84619752c586d5b2
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Stephan Müller
Stephan Müller
Tobias Bexte
Tobias Bexte
Tobias Bexte
Veronika Gebel
Veronika Gebel
Franziska Kalensee
Franziska Kalensee
Eva Stolzenberg
Eva Stolzenberg
Jessica Hartmann
Ulrike Koehl
Ulrike Koehl
Ulrike Koehl
Axel Schambach
Axel Schambach
Winfried S. Wels
Winfried S. Wels
Winfried S. Wels
Ute Modlich
Evelyn Ullrich
Evelyn Ullrich
Evelyn Ullrich
Evelyn Ullrich
spellingShingle Stephan Müller
Stephan Müller
Tobias Bexte
Tobias Bexte
Tobias Bexte
Veronika Gebel
Veronika Gebel
Franziska Kalensee
Franziska Kalensee
Eva Stolzenberg
Eva Stolzenberg
Jessica Hartmann
Ulrike Koehl
Ulrike Koehl
Ulrike Koehl
Axel Schambach
Axel Schambach
Winfried S. Wels
Winfried S. Wels
Winfried S. Wels
Ute Modlich
Evelyn Ullrich
Evelyn Ullrich
Evelyn Ullrich
Evelyn Ullrich
High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia
Frontiers in Immunology
chimeric antigen receptor
natural killer cells
acute lymphoblastic leukemia
alpharetroviral vector
lentiviral vector
gene therapy
author_facet Stephan Müller
Stephan Müller
Tobias Bexte
Tobias Bexte
Tobias Bexte
Veronika Gebel
Veronika Gebel
Franziska Kalensee
Franziska Kalensee
Eva Stolzenberg
Eva Stolzenberg
Jessica Hartmann
Ulrike Koehl
Ulrike Koehl
Ulrike Koehl
Axel Schambach
Axel Schambach
Winfried S. Wels
Winfried S. Wels
Winfried S. Wels
Ute Modlich
Evelyn Ullrich
Evelyn Ullrich
Evelyn Ullrich
Evelyn Ullrich
author_sort Stephan Müller
title High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia
title_short High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia
title_full High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia
title_fullStr High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia
title_full_unstemmed High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia
title_sort high cytotoxic efficiency of lentivirally and alpharetrovirally engineered cd19-specific chimeric antigen receptor natural killer cells against acute lymphoblastic leukemia
publisher Frontiers Media S.A.
series Frontiers in Immunology
issn 1664-3224
publishDate 2020-01-01
description Autologous chimeric antigen receptor-modified (CAR) T cells with specificity for CD19 showed potent antitumor efficacy in clinical trials against relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL). Contrary to T cells, natural killer (NK) cells kill their targets in a non-antigen-specific manner and do not carry the risk of inducing graft vs. host disease (GvHD), allowing application of donor-derived cells in an allogenic setting. Hence, unlike autologous CAR-T cells, therapeutic CD19-CAR-NK cells can be generated as an off-the-shelf product from healthy donors. Nevertheless, genetic engineering of peripheral blood (PB) derived NK cells remains challenging and optimized protocols are needed. In our study, we aimed to optimize the generation of CD19-CAR-NK cells by retroviral transduction to improve the high antileukemic capacity of NK cells. We compared two different retroviral vector platforms, the lentiviral and alpharetroviral, both in combination with two different transduction enhancers (Retronectin and Vectofusin-1). We further explored different NK cell isolation techniques (NK cell enrichment and CD3/CD19 depletion) to identify the most efficacious methods for genetic engineering of NK cells. Our results demonstrated that transduction of NK cells with RD114-TR pseudotyped retroviral vectors, in combination with Vectofusin-1 was the most efficient method to generate CD19-CAR-NK cells. Retronectin was potent in enhancing lentiviral/VSV-G gene delivery to NK cells but not alpharetroviral/RD114-TR. Furthermore, the Vectofusin-based transduction of NK cells with CD19-CARs delivered by alpharetroviral/RD114-TR and lentiviral/RD114-TR vectors outperformed lentiviral/VSV-G vectors. The final generated CD19-CAR-NK cells displayed superior cytotoxic activity against CD19-expressing target cells when compared to non-transduced NK cells achieving up to 90% specific killing activity. In summary, our findings present the use of RD114-TR pseudotyped retroviral particles in combination with Vectofusin-1 as a successful strategy to genetically modify PB-derived NK cells to achieve highly cytotoxic CD19-CAR-NK cells at high yield.
topic chimeric antigen receptor
natural killer cells
acute lymphoblastic leukemia
alpharetroviral vector
lentiviral vector
gene therapy
url https://www.frontiersin.org/article/10.3389/fimmu.2019.03123/full
work_keys_str_mv AT stephanmuller highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT stephanmuller highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT tobiasbexte highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT tobiasbexte highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT tobiasbexte highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT veronikagebel highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT veronikagebel highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT franziskakalensee highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT franziskakalensee highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT evastolzenberg highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT evastolzenberg highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT jessicahartmann highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT ulrikekoehl highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT ulrikekoehl highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT ulrikekoehl highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT axelschambach highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT axelschambach highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT winfriedswels highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT winfriedswels highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT winfriedswels highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT utemodlich highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT evelynullrich highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT evelynullrich highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT evelynullrich highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
AT evelynullrich highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia
_version_ 1724963544176263168
spelling doaj-d8dae0285dea4bba84619752c586d5b22020-11-25T01:59:37ZengFrontiers Media S.A.Frontiers in Immunology1664-32242020-01-011010.3389/fimmu.2019.03123485159High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic LeukemiaStephan Müller0Stephan Müller1Tobias Bexte2Tobias Bexte3Tobias Bexte4Veronika Gebel5Veronika Gebel6Franziska Kalensee7Franziska Kalensee8Eva Stolzenberg9Eva Stolzenberg10Jessica Hartmann11Ulrike Koehl12Ulrike Koehl13Ulrike Koehl14Axel Schambach15Axel Schambach16Winfried S. Wels17Winfried S. Wels18Winfried S. Wels19Ute Modlich20Evelyn Ullrich21Evelyn Ullrich22Evelyn Ullrich23Evelyn Ullrich24Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyExperimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyGerman Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, GermanyExperimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyExperimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyExperimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, GermanyFraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, GermanyInstitute of Cellular Therapeutics, Hannover Medical School, Hanover, GermanyInstitute of Clinical Immunology, Faculty of Medicine, University Leipzig, Leipzig, GermanyInstitute of Experimental Hematology, Hannover Medical School, Hanover, GermanyDivision of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United StatesGerman Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany0Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany1Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany2Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich Institute, Langen, GermanyExperimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyGerman Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany1Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, GermanyAutologous chimeric antigen receptor-modified (CAR) T cells with specificity for CD19 showed potent antitumor efficacy in clinical trials against relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL). Contrary to T cells, natural killer (NK) cells kill their targets in a non-antigen-specific manner and do not carry the risk of inducing graft vs. host disease (GvHD), allowing application of donor-derived cells in an allogenic setting. Hence, unlike autologous CAR-T cells, therapeutic CD19-CAR-NK cells can be generated as an off-the-shelf product from healthy donors. Nevertheless, genetic engineering of peripheral blood (PB) derived NK cells remains challenging and optimized protocols are needed. In our study, we aimed to optimize the generation of CD19-CAR-NK cells by retroviral transduction to improve the high antileukemic capacity of NK cells. We compared two different retroviral vector platforms, the lentiviral and alpharetroviral, both in combination with two different transduction enhancers (Retronectin and Vectofusin-1). We further explored different NK cell isolation techniques (NK cell enrichment and CD3/CD19 depletion) to identify the most efficacious methods for genetic engineering of NK cells. Our results demonstrated that transduction of NK cells with RD114-TR pseudotyped retroviral vectors, in combination with Vectofusin-1 was the most efficient method to generate CD19-CAR-NK cells. Retronectin was potent in enhancing lentiviral/VSV-G gene delivery to NK cells but not alpharetroviral/RD114-TR. Furthermore, the Vectofusin-based transduction of NK cells with CD19-CARs delivered by alpharetroviral/RD114-TR and lentiviral/RD114-TR vectors outperformed lentiviral/VSV-G vectors. The final generated CD19-CAR-NK cells displayed superior cytotoxic activity against CD19-expressing target cells when compared to non-transduced NK cells achieving up to 90% specific killing activity. In summary, our findings present the use of RD114-TR pseudotyped retroviral particles in combination with Vectofusin-1 as a successful strategy to genetically modify PB-derived NK cells to achieve highly cytotoxic CD19-CAR-NK cells at high yield.https://www.frontiersin.org/article/10.3389/fimmu.2019.03123/fullchimeric antigen receptornatural killer cellsacute lymphoblastic leukemiaalpharetroviral vectorlentiviral vectorgene therapy