High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia
Autologous chimeric antigen receptor-modified (CAR) T cells with specificity for CD19 showed potent antitumor efficacy in clinical trials against relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL). Contrary to T cells, natural killer (NK) cells kill their targets in a non-antigen-sp...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-01-01
|
Series: | Frontiers in Immunology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fimmu.2019.03123/full |
id |
doaj-d8dae0285dea4bba84619752c586d5b2 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stephan Müller Stephan Müller Tobias Bexte Tobias Bexte Tobias Bexte Veronika Gebel Veronika Gebel Franziska Kalensee Franziska Kalensee Eva Stolzenberg Eva Stolzenberg Jessica Hartmann Ulrike Koehl Ulrike Koehl Ulrike Koehl Axel Schambach Axel Schambach Winfried S. Wels Winfried S. Wels Winfried S. Wels Ute Modlich Evelyn Ullrich Evelyn Ullrich Evelyn Ullrich Evelyn Ullrich |
spellingShingle |
Stephan Müller Stephan Müller Tobias Bexte Tobias Bexte Tobias Bexte Veronika Gebel Veronika Gebel Franziska Kalensee Franziska Kalensee Eva Stolzenberg Eva Stolzenberg Jessica Hartmann Ulrike Koehl Ulrike Koehl Ulrike Koehl Axel Schambach Axel Schambach Winfried S. Wels Winfried S. Wels Winfried S. Wels Ute Modlich Evelyn Ullrich Evelyn Ullrich Evelyn Ullrich Evelyn Ullrich High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia Frontiers in Immunology chimeric antigen receptor natural killer cells acute lymphoblastic leukemia alpharetroviral vector lentiviral vector gene therapy |
author_facet |
Stephan Müller Stephan Müller Tobias Bexte Tobias Bexte Tobias Bexte Veronika Gebel Veronika Gebel Franziska Kalensee Franziska Kalensee Eva Stolzenberg Eva Stolzenberg Jessica Hartmann Ulrike Koehl Ulrike Koehl Ulrike Koehl Axel Schambach Axel Schambach Winfried S. Wels Winfried S. Wels Winfried S. Wels Ute Modlich Evelyn Ullrich Evelyn Ullrich Evelyn Ullrich Evelyn Ullrich |
author_sort |
Stephan Müller |
title |
High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia |
title_short |
High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia |
title_full |
High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia |
title_fullStr |
High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia |
title_full_unstemmed |
High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia |
title_sort |
high cytotoxic efficiency of lentivirally and alpharetrovirally engineered cd19-specific chimeric antigen receptor natural killer cells against acute lymphoblastic leukemia |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Immunology |
issn |
1664-3224 |
publishDate |
2020-01-01 |
description |
Autologous chimeric antigen receptor-modified (CAR) T cells with specificity for CD19 showed potent antitumor efficacy in clinical trials against relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL). Contrary to T cells, natural killer (NK) cells kill their targets in a non-antigen-specific manner and do not carry the risk of inducing graft vs. host disease (GvHD), allowing application of donor-derived cells in an allogenic setting. Hence, unlike autologous CAR-T cells, therapeutic CD19-CAR-NK cells can be generated as an off-the-shelf product from healthy donors. Nevertheless, genetic engineering of peripheral blood (PB) derived NK cells remains challenging and optimized protocols are needed. In our study, we aimed to optimize the generation of CD19-CAR-NK cells by retroviral transduction to improve the high antileukemic capacity of NK cells. We compared two different retroviral vector platforms, the lentiviral and alpharetroviral, both in combination with two different transduction enhancers (Retronectin and Vectofusin-1). We further explored different NK cell isolation techniques (NK cell enrichment and CD3/CD19 depletion) to identify the most efficacious methods for genetic engineering of NK cells. Our results demonstrated that transduction of NK cells with RD114-TR pseudotyped retroviral vectors, in combination with Vectofusin-1 was the most efficient method to generate CD19-CAR-NK cells. Retronectin was potent in enhancing lentiviral/VSV-G gene delivery to NK cells but not alpharetroviral/RD114-TR. Furthermore, the Vectofusin-based transduction of NK cells with CD19-CARs delivered by alpharetroviral/RD114-TR and lentiviral/RD114-TR vectors outperformed lentiviral/VSV-G vectors. The final generated CD19-CAR-NK cells displayed superior cytotoxic activity against CD19-expressing target cells when compared to non-transduced NK cells achieving up to 90% specific killing activity. In summary, our findings present the use of RD114-TR pseudotyped retroviral particles in combination with Vectofusin-1 as a successful strategy to genetically modify PB-derived NK cells to achieve highly cytotoxic CD19-CAR-NK cells at high yield. |
topic |
chimeric antigen receptor natural killer cells acute lymphoblastic leukemia alpharetroviral vector lentiviral vector gene therapy |
url |
https://www.frontiersin.org/article/10.3389/fimmu.2019.03123/full |
work_keys_str_mv |
AT stephanmuller highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT stephanmuller highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT tobiasbexte highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT tobiasbexte highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT tobiasbexte highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT veronikagebel highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT veronikagebel highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT franziskakalensee highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT franziskakalensee highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT evastolzenberg highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT evastolzenberg highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT jessicahartmann highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT ulrikekoehl highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT ulrikekoehl highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT ulrikekoehl highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT axelschambach highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT axelschambach highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT winfriedswels highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT winfriedswels highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT winfriedswels highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT utemodlich highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT evelynullrich highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT evelynullrich highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT evelynullrich highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia AT evelynullrich highcytotoxicefficiencyoflentivirallyandalpharetrovirallyengineeredcd19specificchimericantigenreceptornaturalkillercellsagainstacutelymphoblasticleukemia |
_version_ |
1724963544176263168 |
spelling |
doaj-d8dae0285dea4bba84619752c586d5b22020-11-25T01:59:37ZengFrontiers Media S.A.Frontiers in Immunology1664-32242020-01-011010.3389/fimmu.2019.03123485159High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic LeukemiaStephan Müller0Stephan Müller1Tobias Bexte2Tobias Bexte3Tobias Bexte4Veronika Gebel5Veronika Gebel6Franziska Kalensee7Franziska Kalensee8Eva Stolzenberg9Eva Stolzenberg10Jessica Hartmann11Ulrike Koehl12Ulrike Koehl13Ulrike Koehl14Axel Schambach15Axel Schambach16Winfried S. Wels17Winfried S. Wels18Winfried S. Wels19Ute Modlich20Evelyn Ullrich21Evelyn Ullrich22Evelyn Ullrich23Evelyn Ullrich24Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyExperimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyGerman Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, GermanyExperimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyExperimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyExperimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, GermanyFraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, GermanyInstitute of Cellular Therapeutics, Hannover Medical School, Hanover, GermanyInstitute of Clinical Immunology, Faculty of Medicine, University Leipzig, Leipzig, GermanyInstitute of Experimental Hematology, Hannover Medical School, Hanover, GermanyDivision of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United StatesGerman Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany0Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany1Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany2Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich Institute, Langen, GermanyExperimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyDivision of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, GermanyGerman Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany1Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, GermanyAutologous chimeric antigen receptor-modified (CAR) T cells with specificity for CD19 showed potent antitumor efficacy in clinical trials against relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL). Contrary to T cells, natural killer (NK) cells kill their targets in a non-antigen-specific manner and do not carry the risk of inducing graft vs. host disease (GvHD), allowing application of donor-derived cells in an allogenic setting. Hence, unlike autologous CAR-T cells, therapeutic CD19-CAR-NK cells can be generated as an off-the-shelf product from healthy donors. Nevertheless, genetic engineering of peripheral blood (PB) derived NK cells remains challenging and optimized protocols are needed. In our study, we aimed to optimize the generation of CD19-CAR-NK cells by retroviral transduction to improve the high antileukemic capacity of NK cells. We compared two different retroviral vector platforms, the lentiviral and alpharetroviral, both in combination with two different transduction enhancers (Retronectin and Vectofusin-1). We further explored different NK cell isolation techniques (NK cell enrichment and CD3/CD19 depletion) to identify the most efficacious methods for genetic engineering of NK cells. Our results demonstrated that transduction of NK cells with RD114-TR pseudotyped retroviral vectors, in combination with Vectofusin-1 was the most efficient method to generate CD19-CAR-NK cells. Retronectin was potent in enhancing lentiviral/VSV-G gene delivery to NK cells but not alpharetroviral/RD114-TR. Furthermore, the Vectofusin-based transduction of NK cells with CD19-CARs delivered by alpharetroviral/RD114-TR and lentiviral/RD114-TR vectors outperformed lentiviral/VSV-G vectors. The final generated CD19-CAR-NK cells displayed superior cytotoxic activity against CD19-expressing target cells when compared to non-transduced NK cells achieving up to 90% specific killing activity. In summary, our findings present the use of RD114-TR pseudotyped retroviral particles in combination with Vectofusin-1 as a successful strategy to genetically modify PB-derived NK cells to achieve highly cytotoxic CD19-CAR-NK cells at high yield.https://www.frontiersin.org/article/10.3389/fimmu.2019.03123/fullchimeric antigen receptornatural killer cellsacute lymphoblastic leukemiaalpharetroviral vectorlentiviral vectorgene therapy |