The Friendship Theorem
In this article we prove the friendship theorem according to the article [1], which states that if a group of people has the property that any pair of persons have exactly one common friend, then there is a universal friend, i.e. a person who is a friend of every other person in the group
Main Author: | Pąk Karol |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2012-12-01
|
Series: | Formalized Mathematics |
Online Access: | https://doi.org/10.2478/v10037-012-0028-7 |
Similar Items
-
A Variant of The Theorem of Friendship
by: Edison Montoro Alegre, et al.
Published: (2016-11-01) -
Bertrand’s Ballot Theorem
by: Pąk Karol
Published: (2014-06-01) -
The Matiyasevich Theorem. Preliminaries
by: Pak Karol
Published: (2017-12-01) -
Euler’s Partition Theorem
by: Pąk Karol
Published: (2015-06-01) -
Brouwer Invariance of Domain Theorem
by: Pąk Karol
Published: (2014-03-01)