APPLICATION OF SUPPORT SYSTEMS FOR CONSULTING SERVICE TO REAL PROBLEM BY USING A SYNONYM DICTIONARY
This study aims to build a support method for consulting service companies allowing them to respond to client demands regardless of the expertise of the consultants. With an emphasis on the revitalization of small and medium-sized enterprises, the importance of support systems for consulting servi...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Technical University of Kosice
2020-08-01
|
Series: | Acta Electrotechnica et Informatica |
Subjects: | |
Online Access: | http://www.aei.tuke.sk/papers/2020/2/01_Watanabe.pdf |
Summary: | This study aims to build a support method for consulting service companies allowing them to respond to client demands regardless
of the expertise of the consultants. With an emphasis on the revitalization of small and medium-sized enterprises, the importance of
support systems for consulting services for small and medium-sized enterprises, which support solving problems that are difficult to
deal with by an enterprise, are increasing. Consulting companies can respond to a wide range of management consultations; however,
because the contents of a consultation are widely and highly specialized, a service proposal and the problem detection depend on the
experience and intuition of the consultant, and thus a stable service may occasionally not be provided. Therefore, a support system for
providing stable services independent of the ability of consultants is desired. In this research, as the first step in constructing a support
system, an analysis of customer information describing the content of a consultation with the client companies is conducted to predict
the occurrence of future problems. Text data such as the consultant’s visitation history, consultation content by e-mail, and call center
content are used in the analysis because the contents explain not only the current problems but also possibly contain future problems.
This research proposed method for analyzing the text data by employing text mining. In the proposed method, by combining a
correspondence analysis with a DEA (Data Envelopment Analysis) discriminant analysis, words that are strongly related to problem
detection are extracted from a large number of words obtained from text data, and variables of the DEA discriminant analysis are
reduced and analyzed. This paper describes improved method for the application in the real problem. The method is improved to
eliminate the following two problems. First, IDF values are used to extract more general phrases. Second, in order to reduce the
number of companies that cannot be identified, it is used standardization and data are expanded with synonym dictionaries. In this
study, computer experiments were conducted to verify the effectiveness of the improved method through a comparison with an existing
method. The results of the verification experiment are as follows. First, there is a possibility of discovering new factors that cannot be
determined from the intuition and experience of the consultant regarding the target problem. Second, through a comparison with the
existing method, the effectiveness of the proposed method was confirmed. |
---|---|
ISSN: | 1335-8243 1338-3957 |