An imbalance between functional segregation and integration in patients with pontine stroke: A dynamic functional network connectivity study

Background: Previous studies on brain functional connectivity have revealed the neural physiopathology in patients with pontine stroke (PS). However, those studies focused only on the static features of intrinsic fluctuations, rather than on the time-varying effects throughout the entire scan. In th...

Full description

Bibliographic Details
Main Authors: Yingying Wang, Caihong Wang, Peifang Miao, Jingchun Liu, Ying Wei, Luobing Wu, Kaiyu Wang, Jingliang Cheng
Format: Article
Language:English
Published: Elsevier 2020-01-01
Series:NeuroImage: Clinical
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213158220303442
Description
Summary:Background: Previous studies on brain functional connectivity have revealed the neural physiopathology in patients with pontine stroke (PS). However, those studies focused only on the static features of intrinsic fluctuations, rather than on the time-varying effects throughout the entire scan. In the present study, we sought to explore the underlying mechanism of PS using the dynamic functional network connectivity (dFNC) method. Methods: Resting-state functional magnetic resonance imaging (fMRI) data were collected from 58 patients with PS and 52 healthy controls (HC). Independent component analysis (ICA), the sliding window method, and k-means clustering analysis were performed to extract different functional networks, to calculate dFNC matrices, and to estimate distinct dynamic connectivity states. Additionally, temporal features were compared between the two groups in each state to explore the brain’s preference for different dynamic connectivity states in PS, and global and local efficiency were compared among states to explore the differences of topologic organization across different dFNC states. The correlations between clinical scales and the temporal features that differed between the two groups also were calculated. Results: The dFNC analyses suggested four recurring states; in two of these states, the PS group showed a different duration from that of the HC group. Patients with PS spent significantly more time in a sparsely connected state (State 1), which was characterized by relatively low levels of connectivity within and between all brain networks. In contrast, patients with PS spent significantly less time in a highly segregated state (State 2), which was characterized by high levels of positive connectivities within primary perceptional domains and within higher cognitive control domains, and by high levels of negative inter-functional connectivities (inter-FCs) among primary perceptional and higher cognitive control domains. Additionally, the dwell time in State 2 was positively correlated with HC group’s long-term memory scores in the Rey Auditory Verbal Learning Test (RAVLT-L), whereas there was no correlation between the State-2 dwell time and RAVLT-L scores in the PS group. Furthermore, the sparsely connected state and the highly segregated state mentioned above had the highest global efficiency and the highest local efficiency among the four states, respectively. Conclusions: In summary, we observed a preference in the aberrant brain for dynamic connectivity states with different network topologic organization in patients with PS, indicating abnormal functional segregation and integration of the whole brain and confirming the imperfection of functional network connectivity in patients with PS. These findings provide new evidence for the dynamic neural mechanisms underlying clinical symptoms in patients with PS.
ISSN:2213-1582