Highly Efficient Quasi-Solid-State Asymmetric Supercapacitors Based on MoS2/MWCNT and PANI/MWCNT Composite Electrodes

Abstract Molybdenum disulfide (MoS2) and polyaniline (PANI) electrodes were decorated with multi-walled carbon nanotubes (MWCNTs) on the basis of a facial hydrothermal and in situ polymerization methods and served in the asymmetric supercapacitor (ASC). The MoS2 and MWCNTs with a mole ratio of 1:1 i...

Full description

Bibliographic Details
Main Authors: Bing Cheng, Renzhi Cheng, Furui Tan, Xiansheng Liu, Jinghao Huo, Gentian Yue
Format: Article
Language:English
Published: SpringerOpen 2019-02-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-019-2902-5
Description
Summary:Abstract Molybdenum disulfide (MoS2) and polyaniline (PANI) electrodes were decorated with multi-walled carbon nanotubes (MWCNTs) on the basis of a facial hydrothermal and in situ polymerization methods and served in the asymmetric supercapacitor (ASC). The MoS2 and MWCNTs with a mole ratio of 1:1 in MoS2|MWCNTs electrode exhibited better electrochemical properties through extensive electrochemical studies, in terms of the highest specific capacitance of 255.8 F/g at 1 A/g, low internal resistance, and notable electrochemical stability with retention of the initial specific capacitance at 91.6% after 1000 cycles. The as-prepared PANI|MWCNTs electrode also exhibited good specific capacitance of 267.5 F/g at 1 A/g and remained 97.9% capacitance retention after 1000 cycles. Then, the ASC with MoS2|MWCNTs and PANI|MWCNTs composite electrodes were assembled with polyvinyl alcohol (PVA)-Na2SO4 gel electrolyte, which displayed good electrochemical performance with the specific capacitance of 138.1 F/g at 1 A/g, and remained the energy density of 15.09 Wh/kg at a high power density of 2217.95 W/kg. This result shows that this ASC device possesses excellent electrochemical properties of high energy density and power output and thus showing a potential application prospect.
ISSN:1931-7573
1556-276X