The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function
In 2021, Mork and Ulness studied the Mandelbrot and Julia sets for a generalization of the well-explored function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/5/3/92 |
id |
doaj-d8a4eba9ba19401e8b9f3efcdb40a036 |
---|---|
record_format |
Article |
spelling |
doaj-d8a4eba9ba19401e8b9f3efcdb40a0362021-09-26T00:11:19ZengMDPI AGFractal and Fractional2504-31102021-08-015929210.3390/fractalfract5030092The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated FunctionPavel Trojovský0K Venkatachalam1Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicDepartment of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicIn 2021, Mork and Ulness studied the Mandelbrot and Julia sets for a generalization of the well-explored function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>λ</mi></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><mi>λ</mi></mrow></semantics></math></inline-formula>. Their generalization was based on the composition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>η</mi><mi>λ</mi></msub></semantics></math></inline-formula> with the Möbius transformation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mi>z</mi></mfrac></mrow></semantics></math></inline-formula> at each iteration step. Furthermore, they posed a conjecture providing a relation between the coefficients of (each order) iterated series of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><msub><mi>η</mi><mi>λ</mi></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula> (at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) and the Catalan numbers. In this paper, in particular, we prove this conjecture in a more precise (quantitative) formulation.https://www.mdpi.com/2504-3110/5/3/92fractalMandelbrot setJulia setMöbius transformationiterated functionCatalan numbers |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pavel Trojovský K Venkatachalam |
spellingShingle |
Pavel Trojovský K Venkatachalam The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function Fractal and Fractional fractal Mandelbrot set Julia set Möbius transformation iterated function Catalan numbers |
author_facet |
Pavel Trojovský K Venkatachalam |
author_sort |
Pavel Trojovský |
title |
The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function |
title_short |
The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function |
title_full |
The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function |
title_fullStr |
The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function |
title_full_unstemmed |
The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function |
title_sort |
proof of a conjecture relating catalan numbers to an averaged mandelbrot-möbius iterated function |
publisher |
MDPI AG |
series |
Fractal and Fractional |
issn |
2504-3110 |
publishDate |
2021-08-01 |
description |
In 2021, Mork and Ulness studied the Mandelbrot and Julia sets for a generalization of the well-explored function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>λ</mi></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><mi>λ</mi></mrow></semantics></math></inline-formula>. Their generalization was based on the composition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>η</mi><mi>λ</mi></msub></semantics></math></inline-formula> with the Möbius transformation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mi>z</mi></mfrac></mrow></semantics></math></inline-formula> at each iteration step. Furthermore, they posed a conjecture providing a relation between the coefficients of (each order) iterated series of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><msub><mi>η</mi><mi>λ</mi></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula> (at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) and the Catalan numbers. In this paper, in particular, we prove this conjecture in a more precise (quantitative) formulation. |
topic |
fractal Mandelbrot set Julia set Möbius transformation iterated function Catalan numbers |
url |
https://www.mdpi.com/2504-3110/5/3/92 |
work_keys_str_mv |
AT paveltrojovsky theproofofaconjecturerelatingcatalannumberstoanaveragedmandelbrotmobiusiteratedfunction AT kvenkatachalam theproofofaconjecturerelatingcatalannumberstoanaveragedmandelbrotmobiusiteratedfunction AT paveltrojovsky proofofaconjecturerelatingcatalannumberstoanaveragedmandelbrotmobiusiteratedfunction AT kvenkatachalam proofofaconjecturerelatingcatalannumberstoanaveragedmandelbrotmobiusiteratedfunction |
_version_ |
1717366800708009984 |