The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function

In 2021, Mork and Ulness studied the Mandelbrot and Julia sets for a generalization of the well-explored function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>...

Full description

Bibliographic Details
Main Authors: Pavel Trojovský, K Venkatachalam
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/5/3/92
id doaj-d8a4eba9ba19401e8b9f3efcdb40a036
record_format Article
spelling doaj-d8a4eba9ba19401e8b9f3efcdb40a0362021-09-26T00:11:19ZengMDPI AGFractal and Fractional2504-31102021-08-015929210.3390/fractalfract5030092The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated FunctionPavel Trojovský0K Venkatachalam1Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicDepartment of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicIn 2021, Mork and Ulness studied the Mandelbrot and Julia sets for a generalization of the well-explored function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>λ</mi></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><mi>λ</mi></mrow></semantics></math></inline-formula>. Their generalization was based on the composition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>η</mi><mi>λ</mi></msub></semantics></math></inline-formula> with the Möbius transformation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mi>z</mi></mfrac></mrow></semantics></math></inline-formula> at each iteration step. Furthermore, they posed a conjecture providing a relation between the coefficients of (each order) iterated series of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><msub><mi>η</mi><mi>λ</mi></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula> (at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) and the Catalan numbers. In this paper, in particular, we prove this conjecture in a more precise (quantitative) formulation.https://www.mdpi.com/2504-3110/5/3/92fractalMandelbrot setJulia setMöbius transformationiterated functionCatalan numbers
collection DOAJ
language English
format Article
sources DOAJ
author Pavel Trojovský
K Venkatachalam
spellingShingle Pavel Trojovský
K Venkatachalam
The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function
Fractal and Fractional
fractal
Mandelbrot set
Julia set
Möbius transformation
iterated function
Catalan numbers
author_facet Pavel Trojovský
K Venkatachalam
author_sort Pavel Trojovský
title The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function
title_short The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function
title_full The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function
title_fullStr The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function
title_full_unstemmed The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Möbius Iterated Function
title_sort proof of a conjecture relating catalan numbers to an averaged mandelbrot-möbius iterated function
publisher MDPI AG
series Fractal and Fractional
issn 2504-3110
publishDate 2021-08-01
description In 2021, Mork and Ulness studied the Mandelbrot and Julia sets for a generalization of the well-explored function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>λ</mi></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><mi>λ</mi></mrow></semantics></math></inline-formula>. Their generalization was based on the composition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>η</mi><mi>λ</mi></msub></semantics></math></inline-formula> with the Möbius transformation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mi>z</mi></mfrac></mrow></semantics></math></inline-formula> at each iteration step. Furthermore, they posed a conjecture providing a relation between the coefficients of (each order) iterated series of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><msub><mi>η</mi><mi>λ</mi></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula> (at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) and the Catalan numbers. In this paper, in particular, we prove this conjecture in a more precise (quantitative) formulation.
topic fractal
Mandelbrot set
Julia set
Möbius transformation
iterated function
Catalan numbers
url https://www.mdpi.com/2504-3110/5/3/92
work_keys_str_mv AT paveltrojovsky theproofofaconjecturerelatingcatalannumberstoanaveragedmandelbrotmobiusiteratedfunction
AT kvenkatachalam theproofofaconjecturerelatingcatalannumberstoanaveragedmandelbrotmobiusiteratedfunction
AT paveltrojovsky proofofaconjecturerelatingcatalannumberstoanaveragedmandelbrotmobiusiteratedfunction
AT kvenkatachalam proofofaconjecturerelatingcatalannumberstoanaveragedmandelbrotmobiusiteratedfunction
_version_ 1717366800708009984