An Adaptive Control Combination Forecasting Method for Time Series Data

According to the individual forecasting methods, an adaptive control combination forecasting (ACCF) method with adaptive weighting coefficients was proposed for short-term prediction of the time series data. The US population dataset, the American electric power dataset, and the vibration signal dat...

Full description

Bibliographic Details
Main Authors: Hongyan Jiang, Dianjun Fang, Xinyan Zhang
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2021/5573170
Description
Summary:According to the individual forecasting methods, an adaptive control combination forecasting (ACCF) method with adaptive weighting coefficients was proposed for short-term prediction of the time series data. The US population dataset, the American electric power dataset, and the vibration signal dataset in a hydraulic test rig were separately tested by using ACCF method, and then, the accuracy analysis of ACCF method was carried out in the study. The results showed that, in contrast to individual methods or combination methods, the proposed ACCF method was adaptive to adopt one or some of prediction methods and showed satisfactory forecasting results due to flexible adaptability and a high accuracy. It was also concluded that the higher the noise ratio of the tested datasets, the lower the prediction accuracy of the ACCF method; the ACCF method demonstrated a better prediction trend with good volatility and following quality under noisy data, as compared with other methods.
ISSN:1563-5147