Global dynamics of tick-borne diseases
A tick-borne disease model is considered with nonlinear incidence rate and piecewise constant delay of generalized type. It is known that the tick-borne diseases have their peak during certain periods due to the life cycle of ticks. Only adult ticks can bite and transmit disease. Thus, we use a piec...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2020-05-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2020225?viewType=HTML |
Summary: | A tick-borne disease model is considered with nonlinear incidence rate and piecewise constant delay of generalized type. It is known that the tick-borne diseases have their peak during certain periods due to the life cycle of ticks. Only adult ticks can bite and transmit disease. Thus, we use a piecewise constant delay to model this phenomena. The global asymptotic stability of the disease-free and endemic equilibrium is shown by constructing suitable Lyapunov functions and Lyapunov-LaSalle technique. The theoretical findings are illustrated through numerical simulations. |
---|---|
ISSN: | 1551-0018 |