Informal "seed" systems and the management of gene flow in traditional agroecosystems: the case of cassava in Cauca, Colombia.

Our ability to manage gene flow within traditional agroecosystems and their repercussions requires understanding the biology of crops, including farming practices' role in crop ecology. That these practices' effects on crop population genetics have not been quantified bespeaks lack of an a...

Full description

Bibliographic Details
Main Authors: George A Dyer, Carolina González, Diana Carolina Lopera
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3236227?pdf=render
id doaj-d893cf15cad64740acc5111377d428b7
record_format Article
spelling doaj-d893cf15cad64740acc5111377d428b72020-11-25T02:39:29ZengPublic Library of Science (PLoS)PLoS ONE1932-62032011-01-01612e2906710.1371/journal.pone.0029067Informal "seed" systems and the management of gene flow in traditional agroecosystems: the case of cassava in Cauca, Colombia.George A DyerCarolina GonzálezDiana Carolina LoperaOur ability to manage gene flow within traditional agroecosystems and their repercussions requires understanding the biology of crops, including farming practices' role in crop ecology. That these practices' effects on crop population genetics have not been quantified bespeaks lack of an appropriate analytical framework. We use a model that construes seed-management practices as part of a crop's demography to describe the dynamics of cassava (Manihot esculenta Crantz) in Cauca, Colombia. We quantify several management practices for cassava--the first estimates of their kind for a vegetatively-propagated crop--describe their demographic repercussions, and compare them to those of maize, a sexually-reproduced grain crop. We discuss the implications for gene flow, the conservation of cassava diversity, and the biosafety of vegetatively-propagated crops in centers of diversity. Cassava populations are surprisingly open and dynamic: farmers exchange germplasm across localities, particularly improved varieties, and distribute it among neighbors at extremely high rates vis-à-vis maize. This implies that a large portion of cassava populations consists of non-local germplasm, often grown in mixed stands with local varieties. Gene flow from this germplasm into local seed banks and gene pools via pollen has been documented, but its extent remains uncertain. In sum, cassava's biology and vegetative propagation might facilitate pre-release confinement of genetically-modified varieties, as expected, but simultaneously contribute to their diffusion across traditional agroecosystems if released. Genetically-modified cassava is unlikely to displace landraces or compromise their diversity; but rapid diffusion of improved germplasm and subsequent incorporation into cassava landraces, seed banks or wild populations could obstruct the tracking and eradication of deleterious transgenes. Attempts to regulate traditional farming practices to reduce the risks could compromise cassava populations' adaptive potential and ultimately prove ineffectual.http://europepmc.org/articles/PMC3236227?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author George A Dyer
Carolina González
Diana Carolina Lopera
spellingShingle George A Dyer
Carolina González
Diana Carolina Lopera
Informal "seed" systems and the management of gene flow in traditional agroecosystems: the case of cassava in Cauca, Colombia.
PLoS ONE
author_facet George A Dyer
Carolina González
Diana Carolina Lopera
author_sort George A Dyer
title Informal "seed" systems and the management of gene flow in traditional agroecosystems: the case of cassava in Cauca, Colombia.
title_short Informal "seed" systems and the management of gene flow in traditional agroecosystems: the case of cassava in Cauca, Colombia.
title_full Informal "seed" systems and the management of gene flow in traditional agroecosystems: the case of cassava in Cauca, Colombia.
title_fullStr Informal "seed" systems and the management of gene flow in traditional agroecosystems: the case of cassava in Cauca, Colombia.
title_full_unstemmed Informal "seed" systems and the management of gene flow in traditional agroecosystems: the case of cassava in Cauca, Colombia.
title_sort informal "seed" systems and the management of gene flow in traditional agroecosystems: the case of cassava in cauca, colombia.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2011-01-01
description Our ability to manage gene flow within traditional agroecosystems and their repercussions requires understanding the biology of crops, including farming practices' role in crop ecology. That these practices' effects on crop population genetics have not been quantified bespeaks lack of an appropriate analytical framework. We use a model that construes seed-management practices as part of a crop's demography to describe the dynamics of cassava (Manihot esculenta Crantz) in Cauca, Colombia. We quantify several management practices for cassava--the first estimates of their kind for a vegetatively-propagated crop--describe their demographic repercussions, and compare them to those of maize, a sexually-reproduced grain crop. We discuss the implications for gene flow, the conservation of cassava diversity, and the biosafety of vegetatively-propagated crops in centers of diversity. Cassava populations are surprisingly open and dynamic: farmers exchange germplasm across localities, particularly improved varieties, and distribute it among neighbors at extremely high rates vis-à-vis maize. This implies that a large portion of cassava populations consists of non-local germplasm, often grown in mixed stands with local varieties. Gene flow from this germplasm into local seed banks and gene pools via pollen has been documented, but its extent remains uncertain. In sum, cassava's biology and vegetative propagation might facilitate pre-release confinement of genetically-modified varieties, as expected, but simultaneously contribute to their diffusion across traditional agroecosystems if released. Genetically-modified cassava is unlikely to displace landraces or compromise their diversity; but rapid diffusion of improved germplasm and subsequent incorporation into cassava landraces, seed banks or wild populations could obstruct the tracking and eradication of deleterious transgenes. Attempts to regulate traditional farming practices to reduce the risks could compromise cassava populations' adaptive potential and ultimately prove ineffectual.
url http://europepmc.org/articles/PMC3236227?pdf=render
work_keys_str_mv AT georgeadyer informalseedsystemsandthemanagementofgeneflowintraditionalagroecosystemsthecaseofcassavaincaucacolombia
AT carolinagonzalez informalseedsystemsandthemanagementofgeneflowintraditionalagroecosystemsthecaseofcassavaincaucacolombia
AT dianacarolinalopera informalseedsystemsandthemanagementofgeneflowintraditionalagroecosystemsthecaseofcassavaincaucacolombia
_version_ 1724785873511251968