Optimization of unequal-active-and-passive-area piezoelectric unimorph cantilevers with collisions for ultra-thin keyboard design
The purpose of this study is to optimize the design of piezoelectric unimorph cantilevers, for ultra-thin keyboard design, so that the first resonant frequency is located in the sensitive frequency range and the first resonant amplitude is above the perception threshold of human hands for vibratory...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
JVE International
2017-11-01
|
Series: | Journal of Vibroengineering |
Subjects: | |
Online Access: | https://www.jvejournals.com/article/18040 |
Summary: | The purpose of this study is to optimize the design of piezoelectric unimorph cantilevers, for ultra-thin keyboard design, so that the first resonant frequency is located in the sensitive frequency range and the first resonant amplitude is above the perception threshold of human hands for vibratory stimulus. The piezoelectric unimorphs used in this study have unequal active and passive areas. Simulations and experiments were first compared to find the effects of the dimensions on the first resonant frequency and displacement frequency response without collisions. A finite element model with collisions based on the verified boundary conditions was then built. Both the experiment data and simulation data was combined to build a regression model to predict the first resonant frequency with collisions for ultra-thin keyboard design. This study can help designers quickly design a vibrotactile device, in the early design stage. |
---|---|
ISSN: | 1392-8716 2538-8460 |