Analysis of Non-Pivotal Bioequivalence Studies Submitted in Abbreviated New Drug Submissions for Delayed-Release Drug Products

The US FDA’s rule on “Requirements for Submission of Bioequivalence Data” requiring submission of all bioequivalence (BE) studies conducted on the same formulation of the drug product submitted for approval was published in Federal Register in January 2009. With the publication of this rule, we eva...

Full description

Bibliographic Details
Main Authors: Paramjeet Kaur, Xiaojian Jiang, Ethan Stier
Format: Article
Language:English
Published: Canadian Society for Pharmaceutical Sciences 2017-07-01
Series:Journal of Pharmacy & Pharmaceutical Sciences
Online Access:https://journals.library.ualberta.ca/jpps/index.php/JPPS/article/view/29404
Description
Summary:The US FDA’s rule on “Requirements for Submission of Bioequivalence Data” requiring submission of all bioequivalence (BE) studies conducted on the same formulation of the drug product submitted for approval was published in Federal Register in January 2009. With the publication of this rule, we evaluated the impact of data from non-pivotal BE studies in assessing BE and identified the reasons for failed in vivo BE studies for generic oral delayed-release (DR) drug products only. We searched the Agency databases from January 2009 toDecember 2016 to identify Abbreviated New Drug Applications (ANDAs) submitted for DR drug products containing non-pivotal BE studies. Out of 202 ANDAs, 43 ANDAs contained 102 non-pivotal BE studies. Forty-nine non-pivotal BE studies were conducted on the to-be-marketed (TBM) formulation and 53 were conducted on formulations different from the TBM formulation. These experimental formulations primarily differed in the ratio of components of the enteric coating layer and/or amount (i.e., %w/w) of enteric coating layer. Of the 49 non-pivotal BE studies conducted on the TBM formulation, 41 failed to meet the BE acceptance criteria. The majority of failed non-pivotal BE studies on the TBM DR generic products had insufficient power, which was expected as these studies are exploratory in nature and not designed to have adequate power to pass the BE statistical criteria. In addition, among the failed non-pivotal BE studies on the TBM DR generic products, the most commonly failing pharmacokinetic parameter was Cmax. The data from these non-pivotal BE studies indicate that inadequate BE study design can lead to failure of the BE on the same formulation. Also, the non-pivotal BE studies on formulations different from the TBM formulation help us link the formulation design to the product performance in vivo.   This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.
ISSN:1482-1826