Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres
Sk Md Athar AlliDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, IndiaAbstract: Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells wi...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2011-03-01
|
Series: | International Journal of Nanomedicine |
Online Access: | http://www.dovepress.com/formulation-and-evaluation-of-bacillus-coagulans-loaded-hypromellose-m-a6885 |
Summary: | Sk Md Athar AlliDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, IndiaAbstract: Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor ( ƒ1), the similarity factor (ƒ2), and the Rescigno index (ξ1 and ξ 2) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations.Keywords: probiotics, B. coagulans, mucoadhesive, microspheres, extended-release |
---|---|
ISSN: | 1176-9114 1178-2013 |