Summary: | In this experiment, by Liouville-Caputo, CF and AB operators, we present a competition population model consisting of one prey and three predators to investigate various field observations. A system of four-dimensional coupled differential equations is the competition population dynamic model. This study further evaluates the probability of achieving new chaotic behaviors with discrete and non-singular arbitrary operators and explains the chaotic behavior at diverse fractional order values. This population model is also investigated by the computational method of Atangana-Seda, which is based on the Newton polynomial and we find out the error analysis of the proposed numerical scheme. Again, certain numerical calculations are conducted to obtain insight to the newly proposed method’s efficacy. Any attractive illustrations are graphically displayed.
|