KLASIFIKASI AKTIVITAS MENTAL BERDASARKAN DATA EEG MENGGUNAKAN METODE HIBRIDNEURAL NETWORK DAN FUZZY PARTICLE SWARM OPTIMIZATION DENGAN CROSSMUTATED OPERATION

Brain-computer Interface (BCI) merupakan sistem yang mentransformasikan aktivitas listrik otak terhadap kegiatan mental ke dalam pengontrolan sinyal. Electroencephalogram (EEG) merupakan salah satu sinyal yang diperoleh dari aktivitas listrik untuk melakukan klasifikasi terhadap akifitas mental. Neu...

Full description

Bibliographic Details
Main Authors: Stendy B. Sakur, Handayani Tjandrasa
Format: Article
Language:English
Published: Institut Teknologi Sepuluh Nopember 2016-01-01
Series:JUTI: Jurnal Ilmiah Teknologi Informasi
Online Access:http://juti.if.its.ac.id/index.php/juti/article/view/510
id doaj-d84c8fc557f54cce97a8cd6a00ad13fe
record_format Article
spelling doaj-d84c8fc557f54cce97a8cd6a00ad13fe2021-05-29T12:50:10ZengInstitut Teknologi Sepuluh NopemberJUTI: Jurnal Ilmiah Teknologi Informasi1412-63892406-85352016-01-01141446210.12962/j24068535.v14i1.a510326KLASIFIKASI AKTIVITAS MENTAL BERDASARKAN DATA EEG MENGGUNAKAN METODE HIBRIDNEURAL NETWORK DAN FUZZY PARTICLE SWARM OPTIMIZATION DENGAN CROSSMUTATED OPERATIONStendy B. SakurHandayani TjandrasaBrain-computer Interface (BCI) merupakan sistem yang mentransformasikan aktivitas listrik otak terhadap kegiatan mental ke dalam pengontrolan sinyal. Electroencephalogram (EEG) merupakan salah satu sinyal yang diperoleh dari aktivitas listrik untuk melakukan klasifikasi terhadap akifitas mental. Neural Network banyak digunakan untuk proses klasifikasi, namun proses pelatihan dengan algoritma back-propagation (BP) yang menggunakan metode gradient steepest descent solusinya banyak terjebak kedalam minimum lokal. Tujuan penelitian untuk melakukan optimalisasi dalam proses penentuan pembobotan dari metode neural network dalam mengklasifikasikan aktivitas mental sinyal EEG. Particle Swarm Optimization digunakan untuk mengoptimalisasi bobot dari NN dengan Evolutionary Direction Operator dan Migration serta menggunakan Fuzzy Inference System untuk menentukan bobot inersia adaptif serta Cross-Mutated Operation merupakan strategi baru yang diusulkan.Metode ini menyediakan peningkatan akurasi untuk tiga pekerjaan aktivitas mental dimana rata-rata akurasi untuk subjek pertama adalah 54,20%, subjek dua 58,40% dan 54,48% untuk subjek tiga. Akurasi terbaik dari seluruh percobaan pada subjek pertama adalah 69,18%, subjek dua 67,20% dan 57,67% untuk subjek tiga. Dengan demikian metode yang diusulkan masih lebih baik dari metode sebelumnya.http://juti.if.its.ac.id/index.php/juti/article/view/510
collection DOAJ
language English
format Article
sources DOAJ
author Stendy B. Sakur
Handayani Tjandrasa
spellingShingle Stendy B. Sakur
Handayani Tjandrasa
KLASIFIKASI AKTIVITAS MENTAL BERDASARKAN DATA EEG MENGGUNAKAN METODE HIBRIDNEURAL NETWORK DAN FUZZY PARTICLE SWARM OPTIMIZATION DENGAN CROSSMUTATED OPERATION
JUTI: Jurnal Ilmiah Teknologi Informasi
author_facet Stendy B. Sakur
Handayani Tjandrasa
author_sort Stendy B. Sakur
title KLASIFIKASI AKTIVITAS MENTAL BERDASARKAN DATA EEG MENGGUNAKAN METODE HIBRIDNEURAL NETWORK DAN FUZZY PARTICLE SWARM OPTIMIZATION DENGAN CROSSMUTATED OPERATION
title_short KLASIFIKASI AKTIVITAS MENTAL BERDASARKAN DATA EEG MENGGUNAKAN METODE HIBRIDNEURAL NETWORK DAN FUZZY PARTICLE SWARM OPTIMIZATION DENGAN CROSSMUTATED OPERATION
title_full KLASIFIKASI AKTIVITAS MENTAL BERDASARKAN DATA EEG MENGGUNAKAN METODE HIBRIDNEURAL NETWORK DAN FUZZY PARTICLE SWARM OPTIMIZATION DENGAN CROSSMUTATED OPERATION
title_fullStr KLASIFIKASI AKTIVITAS MENTAL BERDASARKAN DATA EEG MENGGUNAKAN METODE HIBRIDNEURAL NETWORK DAN FUZZY PARTICLE SWARM OPTIMIZATION DENGAN CROSSMUTATED OPERATION
title_full_unstemmed KLASIFIKASI AKTIVITAS MENTAL BERDASARKAN DATA EEG MENGGUNAKAN METODE HIBRIDNEURAL NETWORK DAN FUZZY PARTICLE SWARM OPTIMIZATION DENGAN CROSSMUTATED OPERATION
title_sort klasifikasi aktivitas mental berdasarkan data eeg menggunakan metode hibridneural network dan fuzzy particle swarm optimization dengan crossmutated operation
publisher Institut Teknologi Sepuluh Nopember
series JUTI: Jurnal Ilmiah Teknologi Informasi
issn 1412-6389
2406-8535
publishDate 2016-01-01
description Brain-computer Interface (BCI) merupakan sistem yang mentransformasikan aktivitas listrik otak terhadap kegiatan mental ke dalam pengontrolan sinyal. Electroencephalogram (EEG) merupakan salah satu sinyal yang diperoleh dari aktivitas listrik untuk melakukan klasifikasi terhadap akifitas mental. Neural Network banyak digunakan untuk proses klasifikasi, namun proses pelatihan dengan algoritma back-propagation (BP) yang menggunakan metode gradient steepest descent solusinya banyak terjebak kedalam minimum lokal. Tujuan penelitian untuk melakukan optimalisasi dalam proses penentuan pembobotan dari metode neural network dalam mengklasifikasikan aktivitas mental sinyal EEG. Particle Swarm Optimization digunakan untuk mengoptimalisasi bobot dari NN dengan Evolutionary Direction Operator dan Migration serta menggunakan Fuzzy Inference System untuk menentukan bobot inersia adaptif serta Cross-Mutated Operation merupakan strategi baru yang diusulkan.Metode ini menyediakan peningkatan akurasi untuk tiga pekerjaan aktivitas mental dimana rata-rata akurasi untuk subjek pertama adalah 54,20%, subjek dua 58,40% dan 54,48% untuk subjek tiga. Akurasi terbaik dari seluruh percobaan pada subjek pertama adalah 69,18%, subjek dua 67,20% dan 57,67% untuk subjek tiga. Dengan demikian metode yang diusulkan masih lebih baik dari metode sebelumnya.
url http://juti.if.its.ac.id/index.php/juti/article/view/510
work_keys_str_mv AT stendybsakur klasifikasiaktivitasmentalberdasarkandataeegmenggunakanmetodehibridneuralnetworkdanfuzzyparticleswarmoptimizationdengancrossmutatedoperation
AT handayanitjandrasa klasifikasiaktivitasmentalberdasarkandataeegmenggunakanmetodehibridneuralnetworkdanfuzzyparticleswarmoptimizationdengancrossmutatedoperation
_version_ 1721422178899984384