Summary: | The present study aims to elucidate the main variables that increase the level of stress at the beginning of military conscription service using an artificial neural network (ANN)-based prediction model. Random sample data were obtained from one battalion of the Lithuanian Armed Forces, and a survey was conducted to generate data for the training and testing of the ANN models. Using nonlinearity in stress research, numerous ANN structures were constructed and verified to limit the optimal number of neurons, hidden layers, and transfer functions. The highest accuracy was obtained by the multilayer perceptron neural network (MLPNN) with a 6-2-2 partition. A standardized rescaling method was used for covariates. For the activation function, the hyperbolic tangent was used with 20 units in one hidden layer as well as the back-propagation algorithm. The best ANN model was determined as the model that showed the smallest cross-entropy error, the correct classification rate, and the area under the ROC curve. These findings show, with high precision, that cohesion in a team and adaptation to military routines are two critical elements that have the greatest impact on the stress level of conscripts.
|