Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering
The CRISPR-Cas9 technology represents a powerful tool for genome engineering in eukaryotic cells, advancing both fundamental research and therapeutic strategies. Despite the enormous potential of the technology, efficient and direct intracellular delivery of Cas9 ribonucleoprotein (RNP) complexes in...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-09-01
|
Series: | Molecular Therapy: Nucleic Acids |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2162253121002080 |
id |
doaj-d83a80530b204562bf8701e1aa7bfddd |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Laurens Raes Melissa Pille Aranit Harizaj Glenn Goetgeluk Jelter Van Hoeck Stephan Stremersch Juan C. Fraire Toon Brans Olivier Gerrit de Jong Roel Maas-Bakker Enrico Mastrobattista Pieter Vader Stefaan C. De Smedt Bart Vandekerckhove Koen Raemdonck Kevin Braeckmans |
spellingShingle |
Laurens Raes Melissa Pille Aranit Harizaj Glenn Goetgeluk Jelter Van Hoeck Stephan Stremersch Juan C. Fraire Toon Brans Olivier Gerrit de Jong Roel Maas-Bakker Enrico Mastrobattista Pieter Vader Stefaan C. De Smedt Bart Vandekerckhove Koen Raemdonck Kevin Braeckmans Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering Molecular Therapy: Nucleic Acids CRISPR-Cas9 gene editing T cells stem cells photoporation intracellular delivery |
author_facet |
Laurens Raes Melissa Pille Aranit Harizaj Glenn Goetgeluk Jelter Van Hoeck Stephan Stremersch Juan C. Fraire Toon Brans Olivier Gerrit de Jong Roel Maas-Bakker Enrico Mastrobattista Pieter Vader Stefaan C. De Smedt Bart Vandekerckhove Koen Raemdonck Kevin Braeckmans |
author_sort |
Laurens Raes |
title |
Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering |
title_short |
Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering |
title_full |
Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering |
title_fullStr |
Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering |
title_full_unstemmed |
Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering |
title_sort |
cas9 rnp transfection by vapor nanobubble photoporation for ex vivo cell engineering |
publisher |
Elsevier |
series |
Molecular Therapy: Nucleic Acids |
issn |
2162-2531 |
publishDate |
2021-09-01 |
description |
The CRISPR-Cas9 technology represents a powerful tool for genome engineering in eukaryotic cells, advancing both fundamental research and therapeutic strategies. Despite the enormous potential of the technology, efficient and direct intracellular delivery of Cas9 ribonucleoprotein (RNP) complexes in target cells poses a significant hurdle, especially in refractive primary cells. In the present work, vapor nanobubble (VNB) photoporation was explored for Cas9 RNP transfection in a variety of cell types. Proof of concept was first demonstrated in H1299-EGFP cells, before proceeding to hard-to-transfect stem cells and T cells. Gene knock-out levels over 80% and up to 60% were obtained for H1299 cells and mesenchymal stem cells, respectively. In these cell types, the unique possibility of VNB photoporation to knock out genes according to user-defined spatial patterns was demonstrated as well. Next, effective targeting of the programmed cell death 1 receptor and Wiskott-Aldrich syndrome gene in primary human T cells was demonstrated, reaching gene knock-out levels of 25% and 34%, respectively. With a throughput of >200,000 T cells per second, VNB photoporation is a scalable and versatile intracellular delivery method that holds great promise for CRISPR-Cas9-mediated ex vivo engineering of cell therapy products. |
topic |
CRISPR-Cas9 gene editing T cells stem cells photoporation intracellular delivery |
url |
http://www.sciencedirect.com/science/article/pii/S2162253121002080 |
work_keys_str_mv |
AT laurensraes cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT melissapille cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT aranitharizaj cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT glenngoetgeluk cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT jeltervanhoeck cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT stephanstremersch cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT juancfraire cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT toonbrans cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT oliviergerritdejong cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT roelmaasbakker cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT enricomastrobattista cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT pietervader cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT stefaancdesmedt cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT bartvandekerckhove cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT koenraemdonck cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering AT kevinbraeckmans cas9rnptransfectionbyvapornanobubblephotoporationforexvivocellengineering |
_version_ |
1717376341718859776 |
spelling |
doaj-d83a80530b204562bf8701e1aa7bfddd2021-09-19T04:56:58ZengElsevierMolecular Therapy: Nucleic Acids2162-25312021-09-0125696707Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineeringLaurens Raes0Melissa Pille1Aranit Harizaj2Glenn Goetgeluk3Jelter Van Hoeck4Stephan Stremersch5Juan C. Fraire6Toon Brans7Olivier Gerrit de Jong8Roel Maas-Bakker9Enrico Mastrobattista10Pieter Vader11Stefaan C. De Smedt12Bart Vandekerckhove13Koen Raemdonck14Kevin Braeckmans15Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumDepartment of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumDepartment of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumDepartment of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the NetherlandsDepartment of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the NetherlandsDepartment of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the NetherlandsCDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the NetherlandsLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumDepartment of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, BelgiumLaboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Corresponding author: Kevin Braeckmans, Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.E-mail:The CRISPR-Cas9 technology represents a powerful tool for genome engineering in eukaryotic cells, advancing both fundamental research and therapeutic strategies. Despite the enormous potential of the technology, efficient and direct intracellular delivery of Cas9 ribonucleoprotein (RNP) complexes in target cells poses a significant hurdle, especially in refractive primary cells. In the present work, vapor nanobubble (VNB) photoporation was explored for Cas9 RNP transfection in a variety of cell types. Proof of concept was first demonstrated in H1299-EGFP cells, before proceeding to hard-to-transfect stem cells and T cells. Gene knock-out levels over 80% and up to 60% were obtained for H1299 cells and mesenchymal stem cells, respectively. In these cell types, the unique possibility of VNB photoporation to knock out genes according to user-defined spatial patterns was demonstrated as well. Next, effective targeting of the programmed cell death 1 receptor and Wiskott-Aldrich syndrome gene in primary human T cells was demonstrated, reaching gene knock-out levels of 25% and 34%, respectively. With a throughput of >200,000 T cells per second, VNB photoporation is a scalable and versatile intracellular delivery method that holds great promise for CRISPR-Cas9-mediated ex vivo engineering of cell therapy products.http://www.sciencedirect.com/science/article/pii/S2162253121002080CRISPR-Cas9gene editingT cellsstem cellsphotoporationintracellular delivery |