Uniqueness and Parameter Dependence of Positive Solution of Fourth-Order Nonhomogeneous BVPs
<p/> <p>We investigate the following fourth-order four-point nonhomogeneous Sturm-Liouville boundary value problem: <inline-formula> <graphic file="1687-2770-2010-106962-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-1...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Boundary Value Problems |
Online Access: | http://www.boundaryvalueproblems.com/content/2010/106962 |
id |
doaj-d816b514757e4104a222f31e62e53f99 |
---|---|
record_format |
Article |
spelling |
doaj-d816b514757e4104a222f31e62e53f992020-11-25T01:58:31ZengSpringerOpenBoundary Value Problems1687-27621687-27702010-01-0120101106962Uniqueness and Parameter Dependence of Positive Solution of Fourth-Order Nonhomogeneous BVPsSun Jian-PingWang Xiao-Yun<p/> <p>We investigate the following fourth-order four-point nonhomogeneous Sturm-Liouville boundary value problem: <inline-formula> <graphic file="1687-2770-2010-106962-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-106962-i2.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-106962-i3.gif"/></inline-formula>, where <inline-formula> <graphic file="1687-2770-2010-106962-i4.gif"/></inline-formula> and <inline-formula> <graphic file="1687-2770-2010-106962-i5.gif"/></inline-formula> are nonnegative parameters. Some sufficient conditions are given for the existence and uniqueness of a positive solution. The dependence of the solution on the parameters <inline-formula> <graphic file="1687-2770-2010-106962-i6.gif"/></inline-formula> is also studied.</p>http://www.boundaryvalueproblems.com/content/2010/106962 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sun Jian-Ping Wang Xiao-Yun |
spellingShingle |
Sun Jian-Ping Wang Xiao-Yun Uniqueness and Parameter Dependence of Positive Solution of Fourth-Order Nonhomogeneous BVPs Boundary Value Problems |
author_facet |
Sun Jian-Ping Wang Xiao-Yun |
author_sort |
Sun Jian-Ping |
title |
Uniqueness and Parameter Dependence of Positive Solution of Fourth-Order Nonhomogeneous BVPs |
title_short |
Uniqueness and Parameter Dependence of Positive Solution of Fourth-Order Nonhomogeneous BVPs |
title_full |
Uniqueness and Parameter Dependence of Positive Solution of Fourth-Order Nonhomogeneous BVPs |
title_fullStr |
Uniqueness and Parameter Dependence of Positive Solution of Fourth-Order Nonhomogeneous BVPs |
title_full_unstemmed |
Uniqueness and Parameter Dependence of Positive Solution of Fourth-Order Nonhomogeneous BVPs |
title_sort |
uniqueness and parameter dependence of positive solution of fourth-order nonhomogeneous bvps |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2762 1687-2770 |
publishDate |
2010-01-01 |
description |
<p/> <p>We investigate the following fourth-order four-point nonhomogeneous Sturm-Liouville boundary value problem: <inline-formula> <graphic file="1687-2770-2010-106962-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-106962-i2.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-106962-i3.gif"/></inline-formula>, where <inline-formula> <graphic file="1687-2770-2010-106962-i4.gif"/></inline-formula> and <inline-formula> <graphic file="1687-2770-2010-106962-i5.gif"/></inline-formula> are nonnegative parameters. Some sufficient conditions are given for the existence and uniqueness of a positive solution. The dependence of the solution on the parameters <inline-formula> <graphic file="1687-2770-2010-106962-i6.gif"/></inline-formula> is also studied.</p> |
url |
http://www.boundaryvalueproblems.com/content/2010/106962 |
work_keys_str_mv |
AT sunjianping uniquenessandparameterdependenceofpositivesolutionoffourthordernonhomogeneousbvps AT wangxiaoyun uniquenessandparameterdependenceofpositivesolutionoffourthordernonhomogeneousbvps |
_version_ |
1724969114952269824 |