Preparation and performance study of mixed metal oxide catalyst for catalytic removal of toluene

As important pollutant in VOCs, toluene has serious impact on people's health and ed by using hydrotalcite as precursor due to the characteristics of its unique composition and controllable structure. Thus the technical problems of difficult control of structure and high cost of nano catalyst w...

Full description

Bibliographic Details
Main Authors: Liu Hongbo, Huang Zhiyong, Huang Wenhao, Li Chong
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/28/e3sconf_pgsge2021_02080.pdf
Description
Summary:As important pollutant in VOCs, toluene has serious impact on people's health and ed by using hydrotalcite as precursor due to the characteristics of its unique composition and controllable structure. Thus the technical problems of difficult control of structure and high cost of nano catalyst were solved. The mixed metal oxide was used as catalyst for toluene removal and its catalytic performance was studied. The results show that the hydrotalcite precursor with good structure can be obtained by both co-precipitation and hydrothermal method. The well-structured precursor can be synthesized in the range of mole ratios of 0:2:1 to 2:0:1 by different methods. When the reaction temperature is above 80 °C, the reaction speed is fast and the crystalline of hydrotalcite is high. The removal efficiency of toluene by catalyst assisted low temperature plasma is better than that of single low temperature plasma. The best catalytic removal efficiency of toluene is 42.10%, which is 1.8 times higher than that of single low temperature plasma. The order of catalytic performance of different catalysts and low temperature plasma for toluene removal is as follows: Zn-Mg-Al > Cu-Mg-Al > Mg-Al > Co-Mg-Al.
ISSN:2267-1242