Continuity in a parameter of solutions to generic boundary-value problems

We introduce the most general class of linear boundary-value problems for systems of first-order ordinary differential equations whose solutions belong to the complex Hölder space $C^{n+1,\alpha}$, with $0\leq n\in\mathbb{Z}$ and $0\leq\alpha\leq 1$. The boundary conditions can contain derivatives $...

Full description

Bibliographic Details
Main Authors: Vladimir Mikhailets, Aleksandr Murach, Vitalii Soldatov
Format: Article
Language:English
Published: University of Szeged 2016-09-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4905
id doaj-d7f8da71b9744e64bd0d0ee40ad01c84
record_format Article
spelling doaj-d7f8da71b9744e64bd0d0ee40ad01c842021-07-14T07:21:28ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752016-09-0120168711610.14232/ejqtde.2016.1.874905Continuity in a parameter of solutions to generic boundary-value problemsVladimir Mikhailets0Aleksandr Murach1Vitalii Soldatov2Department of Nonlinear Analysis, Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, UkraineDepartment of Nonlinear Analysis, Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, UkraineDepartment of Nonlinear Analysis, Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, UkraineWe introduce the most general class of linear boundary-value problems for systems of first-order ordinary differential equations whose solutions belong to the complex Hölder space $C^{n+1,\alpha}$, with $0\leq n\in\mathbb{Z}$ and $0\leq\alpha\leq 1$. The boundary conditions can contain derivatives $y^{(r)}$, with $1\leq r\leq n+1$, of the solution $y$ to the system. For parameter-dependent problems from this class, we obtain constructive criterion under which their solutions are continuous in the normed space $C^{n+1,\alpha}$ with respect to the parameter.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4905differential systemboundary-value problemhölder spacecontinuity in parameter
collection DOAJ
language English
format Article
sources DOAJ
author Vladimir Mikhailets
Aleksandr Murach
Vitalii Soldatov
spellingShingle Vladimir Mikhailets
Aleksandr Murach
Vitalii Soldatov
Continuity in a parameter of solutions to generic boundary-value problems
Electronic Journal of Qualitative Theory of Differential Equations
differential system
boundary-value problem
hölder space
continuity in parameter
author_facet Vladimir Mikhailets
Aleksandr Murach
Vitalii Soldatov
author_sort Vladimir Mikhailets
title Continuity in a parameter of solutions to generic boundary-value problems
title_short Continuity in a parameter of solutions to generic boundary-value problems
title_full Continuity in a parameter of solutions to generic boundary-value problems
title_fullStr Continuity in a parameter of solutions to generic boundary-value problems
title_full_unstemmed Continuity in a parameter of solutions to generic boundary-value problems
title_sort continuity in a parameter of solutions to generic boundary-value problems
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2016-09-01
description We introduce the most general class of linear boundary-value problems for systems of first-order ordinary differential equations whose solutions belong to the complex Hölder space $C^{n+1,\alpha}$, with $0\leq n\in\mathbb{Z}$ and $0\leq\alpha\leq 1$. The boundary conditions can contain derivatives $y^{(r)}$, with $1\leq r\leq n+1$, of the solution $y$ to the system. For parameter-dependent problems from this class, we obtain constructive criterion under which their solutions are continuous in the normed space $C^{n+1,\alpha}$ with respect to the parameter.
topic differential system
boundary-value problem
hölder space
continuity in parameter
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4905
work_keys_str_mv AT vladimirmikhailets continuityinaparameterofsolutionstogenericboundaryvalueproblems
AT aleksandrmurach continuityinaparameterofsolutionstogenericboundaryvalueproblems
AT vitaliisoldatov continuityinaparameterofsolutionstogenericboundaryvalueproblems
_version_ 1721303646995480576