Continuity in a parameter of solutions to generic boundary-value problems
We introduce the most general class of linear boundary-value problems for systems of first-order ordinary differential equations whose solutions belong to the complex Hölder space $C^{n+1,\alpha}$, with $0\leq n\in\mathbb{Z}$ and $0\leq\alpha\leq 1$. The boundary conditions can contain derivatives $...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2016-09-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=4905 |
id |
doaj-d7f8da71b9744e64bd0d0ee40ad01c84 |
---|---|
record_format |
Article |
spelling |
doaj-d7f8da71b9744e64bd0d0ee40ad01c842021-07-14T07:21:28ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752016-09-0120168711610.14232/ejqtde.2016.1.874905Continuity in a parameter of solutions to generic boundary-value problemsVladimir Mikhailets0Aleksandr Murach1Vitalii Soldatov2Department of Nonlinear Analysis, Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, UkraineDepartment of Nonlinear Analysis, Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, UkraineDepartment of Nonlinear Analysis, Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, UkraineWe introduce the most general class of linear boundary-value problems for systems of first-order ordinary differential equations whose solutions belong to the complex Hölder space $C^{n+1,\alpha}$, with $0\leq n\in\mathbb{Z}$ and $0\leq\alpha\leq 1$. The boundary conditions can contain derivatives $y^{(r)}$, with $1\leq r\leq n+1$, of the solution $y$ to the system. For parameter-dependent problems from this class, we obtain constructive criterion under which their solutions are continuous in the normed space $C^{n+1,\alpha}$ with respect to the parameter.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=4905differential systemboundary-value problemhölder spacecontinuity in parameter |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vladimir Mikhailets Aleksandr Murach Vitalii Soldatov |
spellingShingle |
Vladimir Mikhailets Aleksandr Murach Vitalii Soldatov Continuity in a parameter of solutions to generic boundary-value problems Electronic Journal of Qualitative Theory of Differential Equations differential system boundary-value problem hölder space continuity in parameter |
author_facet |
Vladimir Mikhailets Aleksandr Murach Vitalii Soldatov |
author_sort |
Vladimir Mikhailets |
title |
Continuity in a parameter of solutions to generic boundary-value problems |
title_short |
Continuity in a parameter of solutions to generic boundary-value problems |
title_full |
Continuity in a parameter of solutions to generic boundary-value problems |
title_fullStr |
Continuity in a parameter of solutions to generic boundary-value problems |
title_full_unstemmed |
Continuity in a parameter of solutions to generic boundary-value problems |
title_sort |
continuity in a parameter of solutions to generic boundary-value problems |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2016-09-01 |
description |
We introduce the most general class of linear boundary-value problems for systems of first-order ordinary differential equations whose solutions belong to the complex Hölder space $C^{n+1,\alpha}$, with $0\leq n\in\mathbb{Z}$ and $0\leq\alpha\leq 1$. The boundary conditions can contain derivatives $y^{(r)}$, with $1\leq r\leq n+1$, of the solution $y$ to the system. For parameter-dependent problems from this class, we obtain constructive criterion under which their solutions are continuous in the normed space $C^{n+1,\alpha}$ with respect to the parameter. |
topic |
differential system boundary-value problem hölder space continuity in parameter |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=4905 |
work_keys_str_mv |
AT vladimirmikhailets continuityinaparameterofsolutionstogenericboundaryvalueproblems AT aleksandrmurach continuityinaparameterofsolutionstogenericboundaryvalueproblems AT vitaliisoldatov continuityinaparameterofsolutionstogenericboundaryvalueproblems |
_version_ |
1721303646995480576 |