Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces

In this paper, we prove that, for compact warped product submanifolds <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mi>n</mi></msup></semantics></math>...

Full description

Bibliographic Details
Main Authors: Yanlin Li, Pişcoran Laurian-Ioan, Akram Ali, Ali H. Alkhaldi
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/9/1587
id doaj-d7e925558e1e4635ba9a8279e1c596e7
record_format Article
spelling doaj-d7e925558e1e4635ba9a8279e1c596e72021-09-26T01:30:47ZengMDPI AGSymmetry2073-89942021-08-01131587158710.3390/sym13091587Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean SpacesYanlin Li0Pişcoran Laurian-Ioan1Akram Ali2Ali H. Alkhaldi3School of Mathematics, Hangzhou Normal University, Hangzhou 311121, ChinaDepartment of Mathematics and Computer Science Victoriei 76, North University Center of Baia Mare Technical University of Cluj Napoca, 430122 Baia Mare, RomaniaDepartment of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaDepartment of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaIn this paper, we prove that, for compact warped product submanifolds <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mi>n</mi></msup></semantics></math></inline-formula> in an Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">E</mi><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msup></semantics></math></inline-formula>, there are no stable <i>p</i>-currents, homology groups are vanishing, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mn>3</mn></msup></semantics></math></inline-formula> is homotopic to the Euclidean sphere <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mn>3</mn></msup></semantics></math></inline-formula> under various extrinsic restrictions, involving the eigenvalue of the warped function, integral Ricci curvature, and the Hessian tensor. The results in this paper can be considered an extension of Xin’s work in the framework of a compact warped product submanifold, when the base manifold is minimal in ambient manifolds.https://www.mdpi.com/2073-8994/13/9/1587warped product submanifoldseuclidean spaceshomology grouphomotopicfundamental groupsstable currents
collection DOAJ
language English
format Article
sources DOAJ
author Yanlin Li
Pişcoran Laurian-Ioan
Akram Ali
Ali H. Alkhaldi
spellingShingle Yanlin Li
Pişcoran Laurian-Ioan
Akram Ali
Ali H. Alkhaldi
Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces
Symmetry
warped product submanifolds
euclidean spaces
homology group
homotopic
fundamental groups
stable currents
author_facet Yanlin Li
Pişcoran Laurian-Ioan
Akram Ali
Ali H. Alkhaldi
author_sort Yanlin Li
title Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces
title_short Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces
title_full Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces
title_fullStr Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces
title_full_unstemmed Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces
title_sort null homology groups and stable currents in warped product submanifolds of euclidean spaces
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-08-01
description In this paper, we prove that, for compact warped product submanifolds <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mi>n</mi></msup></semantics></math></inline-formula> in an Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">E</mi><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msup></semantics></math></inline-formula>, there are no stable <i>p</i>-currents, homology groups are vanishing, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mn>3</mn></msup></semantics></math></inline-formula> is homotopic to the Euclidean sphere <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mn>3</mn></msup></semantics></math></inline-formula> under various extrinsic restrictions, involving the eigenvalue of the warped function, integral Ricci curvature, and the Hessian tensor. The results in this paper can be considered an extension of Xin’s work in the framework of a compact warped product submanifold, when the base manifold is minimal in ambient manifolds.
topic warped product submanifolds
euclidean spaces
homology group
homotopic
fundamental groups
stable currents
url https://www.mdpi.com/2073-8994/13/9/1587
work_keys_str_mv AT yanlinli nullhomologygroupsandstablecurrentsinwarpedproductsubmanifoldsofeuclideanspaces
AT piscoranlaurianioan nullhomologygroupsandstablecurrentsinwarpedproductsubmanifoldsofeuclideanspaces
AT akramali nullhomologygroupsandstablecurrentsinwarpedproductsubmanifoldsofeuclideanspaces
AT alihalkhaldi nullhomologygroupsandstablecurrentsinwarpedproductsubmanifoldsofeuclideanspaces
_version_ 1716868880093151232