Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces
In this paper, we prove that, for compact warped product submanifolds <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mi>n</mi></msup></semantics></math>...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/9/1587 |
id |
doaj-d7e925558e1e4635ba9a8279e1c596e7 |
---|---|
record_format |
Article |
spelling |
doaj-d7e925558e1e4635ba9a8279e1c596e72021-09-26T01:30:47ZengMDPI AGSymmetry2073-89942021-08-01131587158710.3390/sym13091587Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean SpacesYanlin Li0Pişcoran Laurian-Ioan1Akram Ali2Ali H. Alkhaldi3School of Mathematics, Hangzhou Normal University, Hangzhou 311121, ChinaDepartment of Mathematics and Computer Science Victoriei 76, North University Center of Baia Mare Technical University of Cluj Napoca, 430122 Baia Mare, RomaniaDepartment of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaDepartment of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaIn this paper, we prove that, for compact warped product submanifolds <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mi>n</mi></msup></semantics></math></inline-formula> in an Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">E</mi><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msup></semantics></math></inline-formula>, there are no stable <i>p</i>-currents, homology groups are vanishing, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mn>3</mn></msup></semantics></math></inline-formula> is homotopic to the Euclidean sphere <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mn>3</mn></msup></semantics></math></inline-formula> under various extrinsic restrictions, involving the eigenvalue of the warped function, integral Ricci curvature, and the Hessian tensor. The results in this paper can be considered an extension of Xin’s work in the framework of a compact warped product submanifold, when the base manifold is minimal in ambient manifolds.https://www.mdpi.com/2073-8994/13/9/1587warped product submanifoldseuclidean spaceshomology grouphomotopicfundamental groupsstable currents |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yanlin Li Pişcoran Laurian-Ioan Akram Ali Ali H. Alkhaldi |
spellingShingle |
Yanlin Li Pişcoran Laurian-Ioan Akram Ali Ali H. Alkhaldi Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces Symmetry warped product submanifolds euclidean spaces homology group homotopic fundamental groups stable currents |
author_facet |
Yanlin Li Pişcoran Laurian-Ioan Akram Ali Ali H. Alkhaldi |
author_sort |
Yanlin Li |
title |
Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces |
title_short |
Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces |
title_full |
Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces |
title_fullStr |
Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces |
title_full_unstemmed |
Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces |
title_sort |
null homology groups and stable currents in warped product submanifolds of euclidean spaces |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-08-01 |
description |
In this paper, we prove that, for compact warped product submanifolds <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mi>n</mi></msup></semantics></math></inline-formula> in an Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">E</mi><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msup></semantics></math></inline-formula>, there are no stable <i>p</i>-currents, homology groups are vanishing, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mn>3</mn></msup></semantics></math></inline-formula> is homotopic to the Euclidean sphere <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mn>3</mn></msup></semantics></math></inline-formula> under various extrinsic restrictions, involving the eigenvalue of the warped function, integral Ricci curvature, and the Hessian tensor. The results in this paper can be considered an extension of Xin’s work in the framework of a compact warped product submanifold, when the base manifold is minimal in ambient manifolds. |
topic |
warped product submanifolds euclidean spaces homology group homotopic fundamental groups stable currents |
url |
https://www.mdpi.com/2073-8994/13/9/1587 |
work_keys_str_mv |
AT yanlinli nullhomologygroupsandstablecurrentsinwarpedproductsubmanifoldsofeuclideanspaces AT piscoranlaurianioan nullhomologygroupsandstablecurrentsinwarpedproductsubmanifoldsofeuclideanspaces AT akramali nullhomologygroupsandstablecurrentsinwarpedproductsubmanifoldsofeuclideanspaces AT alihalkhaldi nullhomologygroupsandstablecurrentsinwarpedproductsubmanifoldsofeuclideanspaces |
_version_ |
1716868880093151232 |