Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm.

Human sperm cryopreservation for assisted reproduction is compromised by ROS-induced sperm cryodamage. Our previous model study in which mouse sperm were treated with H₂O₂ to simulate sperm DNA-damage caused by cryopreservation-induced ROS have discovered that mouse embryos fertilized with treated s...

Full description

Bibliographic Details
Main Authors: Bin Wang, Zhiling Li, Chao Wang, Man Chen, Jianfeng Xiao, Xiaoyan Wu, Wanfen Xiao, Yu Song, Xiaoyan Wang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3769350?pdf=render
id doaj-d7c64ee69bf847b5a0dc7479bfd9c523
record_format Article
spelling doaj-d7c64ee69bf847b5a0dc7479bfd9c5232020-11-25T00:23:37ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0189e7398710.1371/journal.pone.0073987Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm.Bin WangZhiling LiChao WangMan ChenJianfeng XiaoXiaoyan WuWanfen XiaoYu SongXiaoyan WangHuman sperm cryopreservation for assisted reproduction is compromised by ROS-induced sperm cryodamage. Our previous model study in which mouse sperm were treated with H₂O₂ to simulate sperm DNA-damage caused by cryopreservation-induced ROS have discovered that mouse embryos fertilized with treated sperm showed a delay in cleavage that might be associated with cell cycle arrest. The DNA-damage checkpoint pathway underlying the delay remained elusive. Moreover, our previous study have also indicated that γH2AX, the DNA-damage repair marker, was functional in mouse embryos similarly fertilized, but the completeness and correctness are unknown and warrant more studies because insufficiency of completeness and correctness of DNA repair would otherwise trigger apoptosis. Based on the aforementioned model, we used embryo culture, inverted microscope, BrdU incorporation and immunofluorescence to explore the cell cycle phase that arrest occurred and the underlying DNA-damage checkpoint pathway in mouse zygotes fertilized with H₂O₂-treated sperm. We also adopted Tunel to investigate the apoptosis of mouse embryos similarly fertilized at different developmental stages to testify the completeness and correctness of sperm-derived DNA-damage repair. We found G2/M cell cycle arrest in zygotes fertilized with H₂O₂-treated sperm. ATM (pSer-1981) and Chk1 (pSer-345) activations, rather than ATR (pSer-428) and Chk2 (pThr-68), were detected in zygotes of the treated group. The apoptosis of embryos of different developmental stages of the treated group weren't different from those of the untreated group. In conclusions, ATM (pSer-1981)-Chk1 (pSer-345) cascade might have mediated G2/M cell cycle arrest and allowed time to facilitate sperm-derived DNA-damage repair in mouse zygotes fertilized with oxygen-stressed sperm, and the DNA-damage repair might be effective.http://europepmc.org/articles/PMC3769350?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Bin Wang
Zhiling Li
Chao Wang
Man Chen
Jianfeng Xiao
Xiaoyan Wu
Wanfen Xiao
Yu Song
Xiaoyan Wang
spellingShingle Bin Wang
Zhiling Li
Chao Wang
Man Chen
Jianfeng Xiao
Xiaoyan Wu
Wanfen Xiao
Yu Song
Xiaoyan Wang
Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm.
PLoS ONE
author_facet Bin Wang
Zhiling Li
Chao Wang
Man Chen
Jianfeng Xiao
Xiaoyan Wu
Wanfen Xiao
Yu Song
Xiaoyan Wang
author_sort Bin Wang
title Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm.
title_short Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm.
title_full Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm.
title_fullStr Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm.
title_full_unstemmed Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm.
title_sort zygotic g2/m cell cycle arrest induced by atm/chk1 activation and dna repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2013-01-01
description Human sperm cryopreservation for assisted reproduction is compromised by ROS-induced sperm cryodamage. Our previous model study in which mouse sperm were treated with H₂O₂ to simulate sperm DNA-damage caused by cryopreservation-induced ROS have discovered that mouse embryos fertilized with treated sperm showed a delay in cleavage that might be associated with cell cycle arrest. The DNA-damage checkpoint pathway underlying the delay remained elusive. Moreover, our previous study have also indicated that γH2AX, the DNA-damage repair marker, was functional in mouse embryos similarly fertilized, but the completeness and correctness are unknown and warrant more studies because insufficiency of completeness and correctness of DNA repair would otherwise trigger apoptosis. Based on the aforementioned model, we used embryo culture, inverted microscope, BrdU incorporation and immunofluorescence to explore the cell cycle phase that arrest occurred and the underlying DNA-damage checkpoint pathway in mouse zygotes fertilized with H₂O₂-treated sperm. We also adopted Tunel to investigate the apoptosis of mouse embryos similarly fertilized at different developmental stages to testify the completeness and correctness of sperm-derived DNA-damage repair. We found G2/M cell cycle arrest in zygotes fertilized with H₂O₂-treated sperm. ATM (pSer-1981) and Chk1 (pSer-345) activations, rather than ATR (pSer-428) and Chk2 (pThr-68), were detected in zygotes of the treated group. The apoptosis of embryos of different developmental stages of the treated group weren't different from those of the untreated group. In conclusions, ATM (pSer-1981)-Chk1 (pSer-345) cascade might have mediated G2/M cell cycle arrest and allowed time to facilitate sperm-derived DNA-damage repair in mouse zygotes fertilized with oxygen-stressed sperm, and the DNA-damage repair might be effective.
url http://europepmc.org/articles/PMC3769350?pdf=render
work_keys_str_mv AT binwang zygoticg2mcellcyclearrestinducedbyatmchk1activationanddnarepairinmouseembryosfertilizedwithhydrogenperoxidetreatedepididymalmousesperm
AT zhilingli zygoticg2mcellcyclearrestinducedbyatmchk1activationanddnarepairinmouseembryosfertilizedwithhydrogenperoxidetreatedepididymalmousesperm
AT chaowang zygoticg2mcellcyclearrestinducedbyatmchk1activationanddnarepairinmouseembryosfertilizedwithhydrogenperoxidetreatedepididymalmousesperm
AT manchen zygoticg2mcellcyclearrestinducedbyatmchk1activationanddnarepairinmouseembryosfertilizedwithhydrogenperoxidetreatedepididymalmousesperm
AT jianfengxiao zygoticg2mcellcyclearrestinducedbyatmchk1activationanddnarepairinmouseembryosfertilizedwithhydrogenperoxidetreatedepididymalmousesperm
AT xiaoyanwu zygoticg2mcellcyclearrestinducedbyatmchk1activationanddnarepairinmouseembryosfertilizedwithhydrogenperoxidetreatedepididymalmousesperm
AT wanfenxiao zygoticg2mcellcyclearrestinducedbyatmchk1activationanddnarepairinmouseembryosfertilizedwithhydrogenperoxidetreatedepididymalmousesperm
AT yusong zygoticg2mcellcyclearrestinducedbyatmchk1activationanddnarepairinmouseembryosfertilizedwithhydrogenperoxidetreatedepididymalmousesperm
AT xiaoyanwang zygoticg2mcellcyclearrestinducedbyatmchk1activationanddnarepairinmouseembryosfertilizedwithhydrogenperoxidetreatedepididymalmousesperm
_version_ 1725355911791247360