Universality of Droplet Impingement: Low-to-High Viscosities and Surface Tensions

When a droplet impinges on a solid surface, its kinetic energy is mainly converted to capillary energy and viscous dissipation energy, the ratio of which depends on the wettability of the target surface and the liquid properties. Currently, there is no experimental or theoretical evidence that sugge...

Full description

Bibliographic Details
Main Authors: Yukihiro Yonemoto, Tomoaki Kunugi
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/8/11/409
Description
Summary:When a droplet impinges on a solid surface, its kinetic energy is mainly converted to capillary energy and viscous dissipation energy, the ratio of which depends on the wettability of the target surface and the liquid properties. Currently, there is no experimental or theoretical evidence that suggests which types of liquids exhibit the capillary energy-dominated impingement behavior. In this paper, we reported the droplet impingement behavior for a wide range of liquid viscosities, surface tensions and target surface wettabilities. Then, we showed that a recently developed energy balance equation for the droplet impingement behavior can be universally employed for predicting the maximum spreading contact area diameter of a droplet for Newtonian liquids in deposition process by modelling the droplet surface deformation. Subsequently, applicability limitations of recent existing models are discussed. The newly developed model demonstrated that the capillary energy-dominated impingement behavior can be observed at considerably low viscosities of liquid droplets such as that of the superfluid of liquid helium.
ISSN:2079-6412