Summary: | Awgichew Shewasinad Yehualashet,1 Teshome Fentik Belachew,2 Zemene Demelash Kifle,3 Ayele Mamo Abebe4 1Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia; 2Department of Pharmacy, Debre Birhan Health Science College, Debre Birhan, Ethiopia; 3School of Pharmacy, Department of Pharmacology, University of Gondar, Gondar, Ethiopia; 4Department of Nursing, College of Health Sciences, Debre Berhan University, Debre Berhan, EthiopiaCorrespondence: Awgichew Shewasinad YehualashetPharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Berhan University, PO Box 445, Debre Berhan, EthiopiaTel +251-93-545-0290Email awgshewa@gmail.comAbstract: Among the vast number of noncommunicable diseases encountered worldwide, cardiovascular diseases accounted for about 17.8 million deaths in 2017 and ischemic heart disease (IHD) remains the single-largest cause of death in countries across all income groups. Because conventional medications are not without shortcomings and patients still refractory to these medications, scientific investigation is ongoing to advance the management of IHD, and shows a great promise for better treatment modalities, but additional research can warrant improvement in terms of the quality of life of patients. Metabolic modulation is one promising strategy for the treatment of IHD, because alterations in energy metabolism are involved in progression of the disease. Therefore, the purpose of this review was to strengthen attention toward the use of metabolic modulators and to review the current level of knowledge on cardiac energy metabolic pathways.Keywords: metabolic modulation, ischemic heart disease, cardiac energy metabolism, mitochondrial dynamics
|