Spatially-explicit estimation of geographical representation in large-scale species distribution datasets.
Much ecological research relies on existing multispecies distribution datasets. Such datasets, however, can vary considerably in quality, extent, resolution or taxonomic coverage. We provide a framework for a spatially-explicit evaluation of geographical representation within large-scale species dis...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3893194?pdf=render |
id |
doaj-d7bc2d73ae95464a8a2f4e2cf78ebc72 |
---|---|
record_format |
Article |
spelling |
doaj-d7bc2d73ae95464a8a2f4e2cf78ebc722020-11-25T01:24:51ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0191e8530610.1371/journal.pone.0085306Spatially-explicit estimation of geographical representation in large-scale species distribution datasets.Jesse M KalwijMark P RobertsonArgo RonkMartin ZobelMeelis PärtelMuch ecological research relies on existing multispecies distribution datasets. Such datasets, however, can vary considerably in quality, extent, resolution or taxonomic coverage. We provide a framework for a spatially-explicit evaluation of geographical representation within large-scale species distribution datasets, using the comparison of an occurrence atlas with a range atlas dataset as a working example. Specifically, we compared occurrence maps for 3773 taxa from the widely-used Atlas Florae Europaeae (AFE) with digitised range maps for 2049 taxa of the lesser-known Atlas of North European Vascular Plants. We calculated the level of agreement at a 50-km spatial resolution using average latitudinal and longitudinal species range, and area of occupancy. Agreement in species distribution was calculated and mapped using Jaccard similarity index and a reduced major axis (RMA) regression analysis of species richness between the entire atlases (5221 taxa in total) and between co-occurring species (601 taxa). We found no difference in distribution ranges or in the area of occupancy frequency distribution, indicating that atlases were sufficiently overlapping for a valid comparison. The similarity index map showed high levels of agreement for central, western, and northern Europe. The RMA regression confirmed that geographical representation of AFE was low in areas with a sparse data recording history (e.g., Russia, Belarus and the Ukraine). For co-occurring species in south-eastern Europe, however, the Atlas of North European Vascular Plants showed remarkably higher richness estimations. Geographical representation of atlas data can be much more heterogeneous than often assumed. Level of agreement between datasets can be used to evaluate geographical representation within datasets. Merging atlases into a single dataset is worthwhile in spite of methodological differences, and helps to fill gaps in our knowledge of species distribution ranges. Species distribution dataset mergers, such as the one exemplified here, can serve as a baseline towards comprehensive species distribution datasets.http://europepmc.org/articles/PMC3893194?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jesse M Kalwij Mark P Robertson Argo Ronk Martin Zobel Meelis Pärtel |
spellingShingle |
Jesse M Kalwij Mark P Robertson Argo Ronk Martin Zobel Meelis Pärtel Spatially-explicit estimation of geographical representation in large-scale species distribution datasets. PLoS ONE |
author_facet |
Jesse M Kalwij Mark P Robertson Argo Ronk Martin Zobel Meelis Pärtel |
author_sort |
Jesse M Kalwij |
title |
Spatially-explicit estimation of geographical representation in large-scale species distribution datasets. |
title_short |
Spatially-explicit estimation of geographical representation in large-scale species distribution datasets. |
title_full |
Spatially-explicit estimation of geographical representation in large-scale species distribution datasets. |
title_fullStr |
Spatially-explicit estimation of geographical representation in large-scale species distribution datasets. |
title_full_unstemmed |
Spatially-explicit estimation of geographical representation in large-scale species distribution datasets. |
title_sort |
spatially-explicit estimation of geographical representation in large-scale species distribution datasets. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2014-01-01 |
description |
Much ecological research relies on existing multispecies distribution datasets. Such datasets, however, can vary considerably in quality, extent, resolution or taxonomic coverage. We provide a framework for a spatially-explicit evaluation of geographical representation within large-scale species distribution datasets, using the comparison of an occurrence atlas with a range atlas dataset as a working example. Specifically, we compared occurrence maps for 3773 taxa from the widely-used Atlas Florae Europaeae (AFE) with digitised range maps for 2049 taxa of the lesser-known Atlas of North European Vascular Plants. We calculated the level of agreement at a 50-km spatial resolution using average latitudinal and longitudinal species range, and area of occupancy. Agreement in species distribution was calculated and mapped using Jaccard similarity index and a reduced major axis (RMA) regression analysis of species richness between the entire atlases (5221 taxa in total) and between co-occurring species (601 taxa). We found no difference in distribution ranges or in the area of occupancy frequency distribution, indicating that atlases were sufficiently overlapping for a valid comparison. The similarity index map showed high levels of agreement for central, western, and northern Europe. The RMA regression confirmed that geographical representation of AFE was low in areas with a sparse data recording history (e.g., Russia, Belarus and the Ukraine). For co-occurring species in south-eastern Europe, however, the Atlas of North European Vascular Plants showed remarkably higher richness estimations. Geographical representation of atlas data can be much more heterogeneous than often assumed. Level of agreement between datasets can be used to evaluate geographical representation within datasets. Merging atlases into a single dataset is worthwhile in spite of methodological differences, and helps to fill gaps in our knowledge of species distribution ranges. Species distribution dataset mergers, such as the one exemplified here, can serve as a baseline towards comprehensive species distribution datasets. |
url |
http://europepmc.org/articles/PMC3893194?pdf=render |
work_keys_str_mv |
AT jessemkalwij spatiallyexplicitestimationofgeographicalrepresentationinlargescalespeciesdistributiondatasets AT markprobertson spatiallyexplicitestimationofgeographicalrepresentationinlargescalespeciesdistributiondatasets AT argoronk spatiallyexplicitestimationofgeographicalrepresentationinlargescalespeciesdistributiondatasets AT martinzobel spatiallyexplicitestimationofgeographicalrepresentationinlargescalespeciesdistributiondatasets AT meelispartel spatiallyexplicitestimationofgeographicalrepresentationinlargescalespeciesdistributiondatasets |
_version_ |
1725116709360107520 |