NUMERICAL OPTIMISATION OF A WASTE-TO- ENERGY PLANT'S OPERATING PARAMETERS USING CFD
The combustion process for using municipal solid waste as a fuel within a waste to energy plant calls for a detailed understanding of the following phenomena. Firstly, this process depends on many input parameters such as proximate and ultimate analyses, the season of the year, primary and secondary...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
VINCA Institute of Nuclear Sciences
2011-01-01
|
Series: | Thermal Science |
Subjects: | |
Online Access: | http://thermalscience.vinca.rs/2011/1/1 |
id |
doaj-d799fc8282ca46ba880b00189dc2c1d3 |
---|---|
record_format |
Article |
spelling |
doaj-d799fc8282ca46ba880b00189dc2c1d32021-01-02T07:37:19ZengVINCA Institute of Nuclear SciencesThermal Science0354-98362011-01-01151116TSCI101004084KNUMERICAL OPTIMISATION OF A WASTE-TO- ENERGY PLANT'S OPERATING PARAMETERS USING CFDNiko SamecMiran KapitlerFilip KokaljThe combustion process for using municipal solid waste as a fuel within a waste to energy plant calls for a detailed understanding of the following phenomena. Firstly, this process depends on many input parameters such as proximate and ultimate analyses, the season of the year, primary and secondary inlet air velocities and, secondly, on output parameters such as the temperatures or mass-flow rates of the combustible products. The variability and mutual dependence of these parameters can be difficult to manage in practice. Another problem is how these parameters can be tuned to achieving optimal combustible conditions with minimal pollutant emissions, during the plant-design phase. in order to meet these goals, a waste-to-energy plant with bed combustion was investigated by using computational fluid-dynamics approach. The adequate variable input boundary conditions based on the real measurement are used and the whole computational work is updated using real plant geometry and the appropriate turbulence, combustion, or heat transfer models. The operating parameters were optimized on output parameters through a trade-off study. The different operating conditions were varied and the combustible products were predicted and visualized. Finally, the response charts and matrix among the input and output parameters during the optimization process are presented, which monitored the dependence among these parameters.http://thermalscience.vinca.rs/2011/1/1municipal solid wastebed combustioncomputational fluid dynamicsnumerical optimizationgoal driven optimizationtrade-off studyparameters correlation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Niko Samec Miran Kapitler Filip Kokalj |
spellingShingle |
Niko Samec Miran Kapitler Filip Kokalj NUMERICAL OPTIMISATION OF A WASTE-TO- ENERGY PLANT'S OPERATING PARAMETERS USING CFD Thermal Science municipal solid waste bed combustion computational fluid dynamics numerical optimization goal driven optimization trade-off study parameters correlation |
author_facet |
Niko Samec Miran Kapitler Filip Kokalj |
author_sort |
Niko Samec |
title |
NUMERICAL OPTIMISATION OF A WASTE-TO- ENERGY PLANT'S OPERATING PARAMETERS USING CFD |
title_short |
NUMERICAL OPTIMISATION OF A WASTE-TO- ENERGY PLANT'S OPERATING PARAMETERS USING CFD |
title_full |
NUMERICAL OPTIMISATION OF A WASTE-TO- ENERGY PLANT'S OPERATING PARAMETERS USING CFD |
title_fullStr |
NUMERICAL OPTIMISATION OF A WASTE-TO- ENERGY PLANT'S OPERATING PARAMETERS USING CFD |
title_full_unstemmed |
NUMERICAL OPTIMISATION OF A WASTE-TO- ENERGY PLANT'S OPERATING PARAMETERS USING CFD |
title_sort |
numerical optimisation of a waste-to- energy plant's operating parameters using cfd |
publisher |
VINCA Institute of Nuclear Sciences |
series |
Thermal Science |
issn |
0354-9836 |
publishDate |
2011-01-01 |
description |
The combustion process for using municipal solid waste as a fuel within a waste to energy plant calls for a detailed understanding of the following phenomena. Firstly, this process depends on many input parameters such as proximate and ultimate analyses, the season of the year, primary and secondary inlet air velocities and, secondly, on output parameters such as the temperatures or mass-flow rates of the combustible products. The variability and mutual dependence of these parameters can be difficult to manage in practice. Another problem is how these parameters can be tuned to achieving optimal combustible conditions with minimal pollutant emissions, during the plant-design phase. in order to meet these goals, a waste-to-energy plant with bed combustion was investigated by using computational fluid-dynamics approach. The adequate variable input boundary conditions based on the real measurement are used and the whole computational work is updated using real plant geometry and the appropriate turbulence, combustion, or heat transfer models. The operating parameters were optimized on output parameters through a trade-off study. The different operating conditions were varied and the combustible products were predicted and visualized. Finally, the response charts and matrix among the input and output parameters during the optimization process are presented, which monitored the dependence among these parameters. |
topic |
municipal solid waste bed combustion computational fluid dynamics numerical optimization goal driven optimization trade-off study parameters correlation |
url |
http://thermalscience.vinca.rs/2011/1/1 |
work_keys_str_mv |
AT nikosamec numericaloptimisationofawastetoenergyplantsoperatingparametersusingcfd AT mirankapitler numericaloptimisationofawastetoenergyplantsoperatingparametersusingcfd AT filipkokalj numericaloptimisationofawastetoenergyplantsoperatingparametersusingcfd |
_version_ |
1724357355305435136 |