3D-MODELING OF VEGETATION FROM LIDAR POINT CLOUDS AND ASSESSMENT OF ITS IMPACT ON FAÇADE SOLAR IRRADIATION
The presence of vegetation can significantly affect the solar irradiation received on building surfaces. Due to the complex shape and seasonal variability of vegetation geometry, this topic has gained much attention from researchers. However, existing methods are limited to rooftops as they are base...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-10-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W2/67/2016/isprs-archives-XLII-2-W2-67-2016.pdf |
id |
doaj-d77e8c874dd04bd2bc1146ab926cbbbf |
---|---|
record_format |
Article |
spelling |
doaj-d77e8c874dd04bd2bc1146ab926cbbbf2020-11-25T00:43:13ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342016-10-01XLII-2/W2677010.5194/isprs-archives-XLII-2-W2-67-20163D-MODELING OF VEGETATION FROM LIDAR POINT CLOUDS AND ASSESSMENT OF ITS IMPACT ON FAÇADE SOLAR IRRADIATIONG. Peronato0E. Rey1M. Andersen2Interdisciplinary Laboratory of Performance-Integrated Design (LIPID), Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, SwitzerlandLaboratory of Architecture and Sustainable Technologies (LAST), Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, SwitzerlandInterdisciplinary Laboratory of Performance-Integrated Design (LIPID), Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, SwitzerlandThe presence of vegetation can significantly affect the solar irradiation received on building surfaces. Due to the complex shape and seasonal variability of vegetation geometry, this topic has gained much attention from researchers. However, existing methods are limited to rooftops as they are based on 2.5D geometry and use simplified radiation algorithms based on view-sheds. This work contributes to overcoming some of these limitations, providing support for 3D geometry to include facades. Thanks to the use of ray-tracing-based simulations and detailed characterization of the 3D surfaces, we can also account for inter-reflections, which might have a significant impact on façade irradiation. <br><br> In order to construct confidence intervals on our results, we modeled vegetation from LiDAR point clouds as 3D convex hulls, which provide the biggest volume and hence the most conservative obstruction scenario. The limits of the confidence intervals were characterized with some extreme scenarios (e.g. opaque trees and absence of trees). <br><br> Results show that uncertainty can vary significantly depending on the characteristics of the urban area and the granularity of the analysis (sensor, building and group of buildings). We argue that this method can give us a better understanding of the uncertainties due to vegetation in the assessment of solar irradiation in urban environments, and therefore, the potential for the installation of solar energy systems.http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W2/67/2016/isprs-archives-XLII-2-W2-67-2016.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
G. Peronato E. Rey M. Andersen |
spellingShingle |
G. Peronato E. Rey M. Andersen 3D-MODELING OF VEGETATION FROM LIDAR POINT CLOUDS AND ASSESSMENT OF ITS IMPACT ON FAÇADE SOLAR IRRADIATION The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
G. Peronato E. Rey M. Andersen |
author_sort |
G. Peronato |
title |
3D-MODELING OF VEGETATION FROM LIDAR POINT CLOUDS AND ASSESSMENT
OF ITS IMPACT ON FAÇADE SOLAR IRRADIATION |
title_short |
3D-MODELING OF VEGETATION FROM LIDAR POINT CLOUDS AND ASSESSMENT
OF ITS IMPACT ON FAÇADE SOLAR IRRADIATION |
title_full |
3D-MODELING OF VEGETATION FROM LIDAR POINT CLOUDS AND ASSESSMENT
OF ITS IMPACT ON FAÇADE SOLAR IRRADIATION |
title_fullStr |
3D-MODELING OF VEGETATION FROM LIDAR POINT CLOUDS AND ASSESSMENT
OF ITS IMPACT ON FAÇADE SOLAR IRRADIATION |
title_full_unstemmed |
3D-MODELING OF VEGETATION FROM LIDAR POINT CLOUDS AND ASSESSMENT
OF ITS IMPACT ON FAÇADE SOLAR IRRADIATION |
title_sort |
3d-modeling of vegetation from lidar point clouds and assessment
of its impact on façade solar irradiation |
publisher |
Copernicus Publications |
series |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
1682-1750 2194-9034 |
publishDate |
2016-10-01 |
description |
The presence of vegetation can significantly affect the solar irradiation received on building surfaces. Due to the complex shape and
seasonal variability of vegetation geometry, this topic has gained much attention from researchers. However, existing methods are
limited to rooftops as they are based on 2.5D geometry and use simplified radiation algorithms based on view-sheds. This work
contributes to overcoming some of these limitations, providing support for 3D geometry to include facades. Thanks to the use of
ray-tracing-based simulations and detailed characterization of the 3D surfaces, we can also account for inter-reflections, which might
have a significant impact on façade irradiation.
<br><br>
In order to construct confidence intervals on our results, we modeled vegetation from LiDAR point clouds as 3D convex hulls, which
provide the biggest volume and hence the most conservative obstruction scenario. The limits of the confidence intervals were characterized
with some extreme scenarios (e.g. opaque trees and absence of trees).
<br><br>
Results show that uncertainty can vary significantly depending on the characteristics of the urban area and the granularity of the
analysis (sensor, building and group of buildings). We argue that this method can give us a better understanding of the uncertainties
due to vegetation in the assessment of solar irradiation in urban environments, and therefore, the potential for the installation of solar
energy systems. |
url |
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W2/67/2016/isprs-archives-XLII-2-W2-67-2016.pdf |
work_keys_str_mv |
AT gperonato 3dmodelingofvegetationfromlidarpointcloudsandassessmentofitsimpactonfacadesolarirradiation AT erey 3dmodelingofvegetationfromlidarpointcloudsandassessmentofitsimpactonfacadesolarirradiation AT mandersen 3dmodelingofvegetationfromlidarpointcloudsandassessmentofitsimpactonfacadesolarirradiation |
_version_ |
1725279792742268928 |