Reliability Analysis of Expansive Soil Slope Stability Based on the Three-Broken Line Model
Based on the characteristics of an expansive soil slope, the slip mass can be simplified to a simpler model with three-broken line rigid bodies. A solution was formulated to calculate the safety factors of the slope, and the results are similar to those based on the strength reduction method. Howeve...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2021/6665099 |
id |
doaj-d7777fc99247408890bc2477e86927dc |
---|---|
record_format |
Article |
spelling |
doaj-d7777fc99247408890bc2477e86927dc2021-04-12T01:23:55ZengHindawi LimitedMathematical Problems in Engineering1563-51472021-01-01202110.1155/2021/6665099Reliability Analysis of Expansive Soil Slope Stability Based on the Three-Broken Line ModelWenwei Li0Baotian Wang1Jinyu Zuo2Bingsheng Zhou3Haixia Zhang4Key Laboratory of Ministry of Education for Geomechanics and Embankment EngineeringKey Laboratory of Ministry of Education for Geomechanics and Embankment EngineeringKey Laboratory of Ministry of Education for Geomechanics and Embankment EngineeringKey Laboratory of Ministry of Education for Geomechanics and Embankment EngineeringKey Laboratory of Ministry of Education for Geomechanics and Embankment EngineeringBased on the characteristics of an expansive soil slope, the slip mass can be simplified to a simpler model with three-broken line rigid bodies. A solution was formulated to calculate the safety factors of the slope, and the results are similar to those based on the strength reduction method. However, similar to conventional methods to analyze the stability of slopes, the deterministic method to obtain the safety factors only calculates the safety factor using deterministic values without considering the randomness of soil parameters, which leads to unstable results. To improve the rationality of the calculated results, this paper aims to construct a reliability analysis method based on the simplified three-broken line model of a landslide. The reliability is calculated with the response surface method in a spreadsheet with efficiency and convenience. The designed program considers the changes in the strength of the shallow soil and the depth of the strongly weathered layer for different stages of the wetting-drying cycles and solves for the probability of failure of the sliding surface at the interface between the strong and weak weathered layers. Considering an expansive soil slope as an example, the reliability of the slope was analyzed based on laboratory test data and the proposed formula. The results show that multiple wetting-drying cycles significantly increase the probability of failure of an expansive soil slope and that the slope typically becomes unstable after six wetting-drying cycles. Slope cutting helps alleviate the adverse effects of wetting-drying cycles.http://dx.doi.org/10.1155/2021/6665099 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wenwei Li Baotian Wang Jinyu Zuo Bingsheng Zhou Haixia Zhang |
spellingShingle |
Wenwei Li Baotian Wang Jinyu Zuo Bingsheng Zhou Haixia Zhang Reliability Analysis of Expansive Soil Slope Stability Based on the Three-Broken Line Model Mathematical Problems in Engineering |
author_facet |
Wenwei Li Baotian Wang Jinyu Zuo Bingsheng Zhou Haixia Zhang |
author_sort |
Wenwei Li |
title |
Reliability Analysis of Expansive Soil Slope Stability Based on the Three-Broken Line Model |
title_short |
Reliability Analysis of Expansive Soil Slope Stability Based on the Three-Broken Line Model |
title_full |
Reliability Analysis of Expansive Soil Slope Stability Based on the Three-Broken Line Model |
title_fullStr |
Reliability Analysis of Expansive Soil Slope Stability Based on the Three-Broken Line Model |
title_full_unstemmed |
Reliability Analysis of Expansive Soil Slope Stability Based on the Three-Broken Line Model |
title_sort |
reliability analysis of expansive soil slope stability based on the three-broken line model |
publisher |
Hindawi Limited |
series |
Mathematical Problems in Engineering |
issn |
1563-5147 |
publishDate |
2021-01-01 |
description |
Based on the characteristics of an expansive soil slope, the slip mass can be simplified to a simpler model with three-broken line rigid bodies. A solution was formulated to calculate the safety factors of the slope, and the results are similar to those based on the strength reduction method. However, similar to conventional methods to analyze the stability of slopes, the deterministic method to obtain the safety factors only calculates the safety factor using deterministic values without considering the randomness of soil parameters, which leads to unstable results. To improve the rationality of the calculated results, this paper aims to construct a reliability analysis method based on the simplified three-broken line model of a landslide. The reliability is calculated with the response surface method in a spreadsheet with efficiency and convenience. The designed program considers the changes in the strength of the shallow soil and the depth of the strongly weathered layer for different stages of the wetting-drying cycles and solves for the probability of failure of the sliding surface at the interface between the strong and weak weathered layers. Considering an expansive soil slope as an example, the reliability of the slope was analyzed based on laboratory test data and the proposed formula. The results show that multiple wetting-drying cycles significantly increase the probability of failure of an expansive soil slope and that the slope typically becomes unstable after six wetting-drying cycles. Slope cutting helps alleviate the adverse effects of wetting-drying cycles. |
url |
http://dx.doi.org/10.1155/2021/6665099 |
work_keys_str_mv |
AT wenweili reliabilityanalysisofexpansivesoilslopestabilitybasedonthethreebrokenlinemodel AT baotianwang reliabilityanalysisofexpansivesoilslopestabilitybasedonthethreebrokenlinemodel AT jinyuzuo reliabilityanalysisofexpansivesoilslopestabilitybasedonthethreebrokenlinemodel AT bingshengzhou reliabilityanalysisofexpansivesoilslopestabilitybasedonthethreebrokenlinemodel AT haixiazhang reliabilityanalysisofexpansivesoilslopestabilitybasedonthethreebrokenlinemodel |
_version_ |
1714683140650303488 |