Summary: | Soil and water loss in agricultural fields is a global problem. Although studies about soil erosion in croplands and vineyards exist, the direct comparison between these land uses is missing, especially under continental climates in Europe. Therefore, it is needed to find control measures to the impacts of these land-use management strategies on soil properties and hydrological response. The objective of this work is to estimate and compare the impacts of croplands and vineyards under conventional management croplands and vineyards on soil properties (water holding capacity—WHC; bulk density—BD; soil water content—SWC; water stable aggregates—WSA; mean weight diameter—MWD; soil organic matter—SOM; available phosphorus—AP; total nitrogen—TN) and hydrological response (runoff—Run; sediment content—SC; sediment loss—SL; carbon loss—C loss; phosphorus loss—P loss; nitrogen loss—N loss) in Eastern Croatia. To achieve these goals, a study was set up using rainfall simulation tests at 58 mm h −1 over 30 minutes on 2 locations (Zmajevac: 45°48′N; 18°46′E; Erdut: 45°30′N; 19°01′E). In total, 32 rainfall simulations were carried out, 8 repetitions in vineyards and 8 in cropland plots of 0.876 m 2 , per location. Bulk density was significantly higher in cropland plots compared with the vineyard. Soil water content was significantly higher in Zmajevac cropland compared with Erdut plots. Also, SWC was significantly lower in Zmajevac vineyard than in the cropland located in the same area. Water stable aggregates and MWD were significantly higher in vineyard plots than in the cropland. Also, SOM and TN were significantly lower in Zmajevac cropland compared with the vineyard located in the same area. Available phosphorus was significantly high in Zmajevac plots than in Erdut. The rainfall simulations showed that Run was significantly higher in Erdut vineyard (8.2 L m −2 ) compared with Zmajevac (3.8 L m −2 ). Also, the Run in Erdut Cropland was significantly lower than in the vineyard. Sediment content did not show significant differences among locations. In Erdut, vineyard plots had a significantly lower SL (28.0 g m −2 ) than the cropland ones (39.1 g m −2 ). C loss was significantly higher in Zmajevac cropland than in Erdut. Also, C loss was significantly lower in Zmajevac vineyard compared with the cropland. We did not observe significant differences in P loss, and N loss also did not show significant differences. The principal component analysis showed that SOM was associated with WSA, AP, and TN. These variables were negatively related to slope, SWC, and C loss (factor 1). Also, MWD was inversely related to SL, P, and N loss (factor 2). Bulk density and SC were negatively related to Run. Overall, we conclude that noninvertive tillage practices in vineyards preserve soil structure, enhance soil quality, and reduce the extent of soil degradation.
|