Summary: | This study investigated the caries-preventive effect of 445 nm laser radiation in combination with fluoride on the prevention of white spot lesions. Previously, several studies have indicated the ability of 488 nm argon ion laser irradiation to reduce early enamel demineralization. A diode laser (445 nm) could be an alternative technology for possible caries-preventive potential. Each sample of a group of seventeen caries-free bovine teeth was treated in four different ways on four different zones of the labial surface: control/no treatment (C), laser irradiation only (L) (0.3 W, 60 s and applied dose of 90 J/cm2), amine fluoride application only (10,000 ppm and pH 3.9) (F), and amine fluoride application followed by laser irradiation (FL). After treatment, the teeth were subjected to a demineralization solution (pH 4.3 for 48 h at 37 °C) to induce subsurface lesions. After sectioning, the teeth were examined by light microscopy. Three teeth were analyzed by scanning electron microscopy (SEM). The depths of the subsurface lesions in the C, L, F, and FL groups were 103.01 (± 13.04), 96.99 (± 14.51), 42.59 (± 17.13), and 24.35 (± 11.38) μm, respectively. The pairwise group comparison showed the following results: p < 0.001 for FL versus C, FL versus L, F versus C, and F versus L, p = 0.019 for FL versus F and p = 0.930 for L versus C. The SEM micrographs support the light-microscopic examination. The results of the current study have shown that using relatively low irradiation settings of 445 nm laser on fluoridated enamel may be effective for prevention of white spot lesions.
|