Assessing the Effect of Prometryn Soil Residue on Soil Microbial Biomass and Different Crops using Bioassay Test

Introduction: Herbicides are the most widely used of chemical pesticides for agricultural production and landscape management. The environmental risk of herbicides should be evaluated near sites of application, even though basic ecotoxicological tests have been conducted before they can be registere...

Full description

Bibliographic Details
Main Authors: mohamad taghi alebrahim, Mohammad Mehdizadeh
Format: Article
Language:fas
Published: Ferdowsi University of Mashhad 2016-09-01
Series:Majallah-i ḥifāẓat-i giyāhān
Subjects:
Online Access:https://jpp.um.ac.ir/index.php/jpp/article/view/48344
id doaj-d73befe24e1444efbb563078d6233063
record_format Article
collection DOAJ
language fas
format Article
sources DOAJ
author mohamad taghi alebrahim
Mohammad Mehdizadeh
spellingShingle mohamad taghi alebrahim
Mohammad Mehdizadeh
Assessing the Effect of Prometryn Soil Residue on Soil Microbial Biomass and Different Crops using Bioassay Test
Majallah-i ḥifāẓat-i giyāhān
ED50
Microorganism
Persistance
Rapeseed
Triazine
author_facet mohamad taghi alebrahim
Mohammad Mehdizadeh
author_sort mohamad taghi alebrahim
title Assessing the Effect of Prometryn Soil Residue on Soil Microbial Biomass and Different Crops using Bioassay Test
title_short Assessing the Effect of Prometryn Soil Residue on Soil Microbial Biomass and Different Crops using Bioassay Test
title_full Assessing the Effect of Prometryn Soil Residue on Soil Microbial Biomass and Different Crops using Bioassay Test
title_fullStr Assessing the Effect of Prometryn Soil Residue on Soil Microbial Biomass and Different Crops using Bioassay Test
title_full_unstemmed Assessing the Effect of Prometryn Soil Residue on Soil Microbial Biomass and Different Crops using Bioassay Test
title_sort assessing the effect of prometryn soil residue on soil microbial biomass and different crops using bioassay test
publisher Ferdowsi University of Mashhad
series Majallah-i ḥifāẓat-i giyāhān
issn 2008-4749
2423-3994
publishDate 2016-09-01
description Introduction: Herbicides are the most widely used of chemical pesticides for agricultural production and landscape management. The environmental risk of herbicides should be evaluated near sites of application, even though basic ecotoxicological tests have been conducted before they can be registered for marketing. For example, triazine herbicides, which are photosynthetic PSII herbicide that considered only slightly or moderately toxic to many susceptible plants, soil microorganisms, mammals and humans, however, concerns have arisen because this herbicide are members of a class claimed to be carcinogenic, or may affect the development as reproductive toxins. For this reason, most reliable evidence is needed to test these claims and investigate their ecological effects. Prometryn is a herbicide belongs to triazine family that may leave residual activity in the soil for extended periods, causing injury and yield reduction of susceptible soil microorganisms and crops in rotation. Compared with other methods, the rapidity of response, sensitivity, high level of precision, simple process and easy operation are the advantages of bioassay methods for the routine monitoring of biologically available photosynthesis-inhibiting herbicides present in agricultural soils. Materials and Methods: A pot experiment was conducted under greenhouse conditions in order to study the sensitivity of 4 different crops to prometryn soil residue at the College of Agricultural Sciences, Ilam University, Ilam, Iran in 2014. Experimental type was completely randomized design in a factorial arrangement with three replications. Treatments included 4 different crops (lettuce, barley, rapeseed and beet) and prometryn simulated concentrations residues in soil (0.0033, 0.0166, 0.033, 0.066, 0.1 and 0.166 mg. kg-1soil). 15 cm diameter pots were filled with a modified soil and 10 of seeds of crops were planted in 5 regular positions. The plants were thinned to five plants per pot after germination. The pots were kept for 30 days under controlled conditions. Shoot and root biomass production was measured 30 days after emergence. At harvest, growth parameters including the dry weight of shoots and roots were determined. The data were subjected to analysis of variance by computer facilities, using Mstatc software. Plant response to prometryn residues was fitted with sigmoidal 3 and 4 parametric equations to the shoot biomass data as a function of the herbicide residue concentrations and was used to calculate the doses for 50% inhibition of shoot growth (ED50). In another experiment the effect of prometryn concentrations (0, 0.0033, 0.0166, 0.033, 0.066, 0.1 and 0.166 mg. kg-1soil) on soil microbial activity was determined using titration method in controlled conditions. Results and Discussion: Plant response to increasing concentration of prometryn, in general, followed a classical dose response relationship. The logistic model fitted well to the root and shoot plants response herbicide concentrations. Results showed that the shoot and root dry matter were significantly affected by increasing prometryn soil residue in all crops (plettuce>beet>barely. Based on the mechanism of action of prometryn and its best efficiency on board leaf plants control, the least biomass reduction obtained for barley is understandable. In general, this is safe to plant a susceptible species if the plant-available residue were less than the species ED10 value, and there would be a great risk for different levels of crop damage if the plant-available residue were higher than ED50 values of the species. Comparisons between species allow the safe selection of a crop that has a critical ED50 level lower than the residue level in the soil. Alternatively, planting a sensitive species could be delayed until the residue level in the soil is less than the critical level. In the Southwest areas of Iran, these crops are often sown few months after the application of a residual herbicide in the preceding crop. This large variation in plant sensitivity to prometryn residues indicates that there is potential for considerable damage to some of the rotational crops. In second experiment the results clearly indicating that in initial days of prometryn application used drastically reduced the C, N and total microbial in treated soil compared with the untreated (Control) soil. Conclusion: According to the results of this studyt the study crops are very suitable for use in bioassays for the side-effects of prometryn at low concentration rates. In this study prometryn herbicide provided symptoms of phytotoxicity to the crops, whereas seed germination of crops was not adversely affected. In the other words, this condition indicating that the application of prometryn in agricultural soil leads to decrease the total biomass of soil microorganisms at initial period. By possibly knowing the level of prometryn residual in the soil, producers could have some flexibility in crop rotations if sensitive crops such as rapeseed are to be planted following triazine herbicide use on crops.
topic ED50
Microorganism
Persistance
Rapeseed
Triazine
url https://jpp.um.ac.ir/index.php/jpp/article/view/48344
work_keys_str_mv AT mohamadtaghialebrahim assessingtheeffectofprometrynsoilresidueonsoilmicrobialbiomassanddifferentcropsusingbioassaytest
AT mohammadmehdizadeh assessingtheeffectofprometrynsoilresidueonsoilmicrobialbiomassanddifferentcropsusingbioassaytest
_version_ 1721545226374348800
spelling doaj-d73befe24e1444efbb563078d62330632021-04-02T21:33:37ZfasFerdowsi University of MashhadMajallah-i ḥifāẓat-i giyāhān2008-47492423-39942016-09-0130233734610.22067/jpp.v30i2.4834411085Assessing the Effect of Prometryn Soil Residue on Soil Microbial Biomass and Different Crops using Bioassay Testmohamad taghi alebrahim0Mohammad Mehdizadeh1University of Mohaghegh ArdabiliUniversity of Mohaghegh ArdabiliIntroduction: Herbicides are the most widely used of chemical pesticides for agricultural production and landscape management. The environmental risk of herbicides should be evaluated near sites of application, even though basic ecotoxicological tests have been conducted before they can be registered for marketing. For example, triazine herbicides, which are photosynthetic PSII herbicide that considered only slightly or moderately toxic to many susceptible plants, soil microorganisms, mammals and humans, however, concerns have arisen because this herbicide are members of a class claimed to be carcinogenic, or may affect the development as reproductive toxins. For this reason, most reliable evidence is needed to test these claims and investigate their ecological effects. Prometryn is a herbicide belongs to triazine family that may leave residual activity in the soil for extended periods, causing injury and yield reduction of susceptible soil microorganisms and crops in rotation. Compared with other methods, the rapidity of response, sensitivity, high level of precision, simple process and easy operation are the advantages of bioassay methods for the routine monitoring of biologically available photosynthesis-inhibiting herbicides present in agricultural soils. Materials and Methods: A pot experiment was conducted under greenhouse conditions in order to study the sensitivity of 4 different crops to prometryn soil residue at the College of Agricultural Sciences, Ilam University, Ilam, Iran in 2014. Experimental type was completely randomized design in a factorial arrangement with three replications. Treatments included 4 different crops (lettuce, barley, rapeseed and beet) and prometryn simulated concentrations residues in soil (0.0033, 0.0166, 0.033, 0.066, 0.1 and 0.166 mg. kg-1soil). 15 cm diameter pots were filled with a modified soil and 10 of seeds of crops were planted in 5 regular positions. The plants were thinned to five plants per pot after germination. The pots were kept for 30 days under controlled conditions. Shoot and root biomass production was measured 30 days after emergence. At harvest, growth parameters including the dry weight of shoots and roots were determined. The data were subjected to analysis of variance by computer facilities, using Mstatc software. Plant response to prometryn residues was fitted with sigmoidal 3 and 4 parametric equations to the shoot biomass data as a function of the herbicide residue concentrations and was used to calculate the doses for 50% inhibition of shoot growth (ED50). In another experiment the effect of prometryn concentrations (0, 0.0033, 0.0166, 0.033, 0.066, 0.1 and 0.166 mg. kg-1soil) on soil microbial activity was determined using titration method in controlled conditions. Results and Discussion: Plant response to increasing concentration of prometryn, in general, followed a classical dose response relationship. The logistic model fitted well to the root and shoot plants response herbicide concentrations. Results showed that the shoot and root dry matter were significantly affected by increasing prometryn soil residue in all crops (plettuce>beet>barely. Based on the mechanism of action of prometryn and its best efficiency on board leaf plants control, the least biomass reduction obtained for barley is understandable. In general, this is safe to plant a susceptible species if the plant-available residue were less than the species ED10 value, and there would be a great risk for different levels of crop damage if the plant-available residue were higher than ED50 values of the species. Comparisons between species allow the safe selection of a crop that has a critical ED50 level lower than the residue level in the soil. Alternatively, planting a sensitive species could be delayed until the residue level in the soil is less than the critical level. In the Southwest areas of Iran, these crops are often sown few months after the application of a residual herbicide in the preceding crop. This large variation in plant sensitivity to prometryn residues indicates that there is potential for considerable damage to some of the rotational crops. In second experiment the results clearly indicating that in initial days of prometryn application used drastically reduced the C, N and total microbial in treated soil compared with the untreated (Control) soil. Conclusion: According to the results of this studyt the study crops are very suitable for use in bioassays for the side-effects of prometryn at low concentration rates. In this study prometryn herbicide provided symptoms of phytotoxicity to the crops, whereas seed germination of crops was not adversely affected. In the other words, this condition indicating that the application of prometryn in agricultural soil leads to decrease the total biomass of soil microorganisms at initial period. By possibly knowing the level of prometryn residual in the soil, producers could have some flexibility in crop rotations if sensitive crops such as rapeseed are to be planted following triazine herbicide use on crops.https://jpp.um.ac.ir/index.php/jpp/article/view/48344ED50MicroorganismPersistanceRapeseedTriazine