Positive Solutions for Singular Complementary Lidstone Boundary Value Problems

By using fixed-point theorems of a cone, we investigate the existence and multiplicity of positive solutions for complementary Lidstone boundary value problems: (−1)𝑛𝑢(2𝑛+1)(𝑡)=ℎ(𝑡)𝑓(𝑢(𝑡)), in 0<𝑡<1, 𝑢(0)=0, 𝑢(2𝑖+1)(0)=𝑢(2𝑖+1)(1)=0, 0≤𝑖≤𝑛−1, where 𝑛∈𝑁....

Full description

Bibliographic Details
Main Authors: Fanglei Wang, Yukun An
Format: Article
Language:English
Published: Hindawi Limited 2011-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2011/714728
id doaj-d73295fc39c048eeb9899af8c04f8bb1
record_format Article
spelling doaj-d73295fc39c048eeb9899af8c04f8bb12020-11-24T22:38:48ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092011-01-01201110.1155/2011/714728714728Positive Solutions for Singular Complementary Lidstone Boundary Value ProblemsFanglei Wang0Yukun An1College of Science, Hohai University, Nanjing 210098, ChinaDepartment of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, ChinaBy using fixed-point theorems of a cone, we investigate the existence and multiplicity of positive solutions for complementary Lidstone boundary value problems: (−1)𝑛𝑢(2𝑛+1)(𝑡)=ℎ(𝑡)𝑓(𝑢(𝑡)), in 0<𝑡<1, 𝑢(0)=0, 𝑢(2𝑖+1)(0)=𝑢(2𝑖+1)(1)=0, 0≤𝑖≤𝑛−1, where 𝑛∈𝑁.http://dx.doi.org/10.1155/2011/714728
collection DOAJ
language English
format Article
sources DOAJ
author Fanglei Wang
Yukun An
spellingShingle Fanglei Wang
Yukun An
Positive Solutions for Singular Complementary Lidstone Boundary Value Problems
Abstract and Applied Analysis
author_facet Fanglei Wang
Yukun An
author_sort Fanglei Wang
title Positive Solutions for Singular Complementary Lidstone Boundary Value Problems
title_short Positive Solutions for Singular Complementary Lidstone Boundary Value Problems
title_full Positive Solutions for Singular Complementary Lidstone Boundary Value Problems
title_fullStr Positive Solutions for Singular Complementary Lidstone Boundary Value Problems
title_full_unstemmed Positive Solutions for Singular Complementary Lidstone Boundary Value Problems
title_sort positive solutions for singular complementary lidstone boundary value problems
publisher Hindawi Limited
series Abstract and Applied Analysis
issn 1085-3375
1687-0409
publishDate 2011-01-01
description By using fixed-point theorems of a cone, we investigate the existence and multiplicity of positive solutions for complementary Lidstone boundary value problems: (−1)𝑛𝑢(2𝑛+1)(𝑡)=ℎ(𝑡)𝑓(𝑢(𝑡)), in 0<𝑡<1, 𝑢(0)=0, 𝑢(2𝑖+1)(0)=𝑢(2𝑖+1)(1)=0, 0≤𝑖≤𝑛−1, where 𝑛∈𝑁.
url http://dx.doi.org/10.1155/2011/714728
work_keys_str_mv AT fangleiwang positivesolutionsforsingularcomplementarylidstoneboundaryvalueproblems
AT yukunan positivesolutionsforsingularcomplementarylidstoneboundaryvalueproblems
_version_ 1725711881110290432