Positive Solutions for Singular Complementary Lidstone Boundary Value Problems
By using fixed-point theorems of a cone, we investigate the existence and multiplicity of positive solutions for complementary Lidstone boundary value problems: (−1)𝑛𝑢(2𝑛+1)(𝑡)=ℎ(𝑡)𝑓(𝑢(𝑡)), in 0<𝑡<1, 𝑢(0)=0, 𝑢(2𝑖+1)(0)=𝑢(2𝑖+1)(1)=0, 0≤𝑖≤𝑛−1, where 𝑛∈𝑁....
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2011-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2011/714728 |
id |
doaj-d73295fc39c048eeb9899af8c04f8bb1 |
---|---|
record_format |
Article |
spelling |
doaj-d73295fc39c048eeb9899af8c04f8bb12020-11-24T22:38:48ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092011-01-01201110.1155/2011/714728714728Positive Solutions for Singular Complementary Lidstone Boundary Value ProblemsFanglei Wang0Yukun An1College of Science, Hohai University, Nanjing 210098, ChinaDepartment of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, ChinaBy using fixed-point theorems of a cone, we investigate the existence and multiplicity of positive solutions for complementary Lidstone boundary value problems: (−1)𝑛𝑢(2𝑛+1)(𝑡)=ℎ(𝑡)𝑓(𝑢(𝑡)), in 0<𝑡<1, 𝑢(0)=0, 𝑢(2𝑖+1)(0)=𝑢(2𝑖+1)(1)=0, 0≤𝑖≤𝑛−1, where 𝑛∈𝑁.http://dx.doi.org/10.1155/2011/714728 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fanglei Wang Yukun An |
spellingShingle |
Fanglei Wang Yukun An Positive Solutions for Singular Complementary Lidstone Boundary Value Problems Abstract and Applied Analysis |
author_facet |
Fanglei Wang Yukun An |
author_sort |
Fanglei Wang |
title |
Positive Solutions for Singular Complementary Lidstone Boundary Value Problems |
title_short |
Positive Solutions for Singular Complementary Lidstone Boundary Value Problems |
title_full |
Positive Solutions for Singular Complementary Lidstone Boundary Value Problems |
title_fullStr |
Positive Solutions for Singular Complementary Lidstone Boundary Value Problems |
title_full_unstemmed |
Positive Solutions for Singular Complementary Lidstone Boundary Value Problems |
title_sort |
positive solutions for singular complementary lidstone boundary value problems |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 1687-0409 |
publishDate |
2011-01-01 |
description |
By using fixed-point theorems of a cone, we investigate the
existence and multiplicity of positive solutions for complementary Lidstone boundary
value problems: (−1)𝑛𝑢(2𝑛+1)(𝑡)=ℎ(𝑡)𝑓(𝑢(𝑡)), in 0<𝑡<1, 𝑢(0)=0, 𝑢(2𝑖+1)(0)=𝑢(2𝑖+1)(1)=0, 0≤𝑖≤𝑛−1, where 𝑛∈𝑁. |
url |
http://dx.doi.org/10.1155/2011/714728 |
work_keys_str_mv |
AT fangleiwang positivesolutionsforsingularcomplementarylidstoneboundaryvalueproblems AT yukunan positivesolutionsforsingularcomplementarylidstoneboundaryvalueproblems |
_version_ |
1725711881110290432 |