Asymptotics for the Ostrovsky-Hunter Equation in the Critical Case

We consider the Cauchy problem for the Ostrovsky-Hunter equation ∂x∂tu-b/3∂x3u-∂xKu3=au, t,x∈R2,  u0,x=u0x, x∈R, where ab>0. Define ξ0=27a/b1/4. Suppose that K is a pseudodifferential operator with a symbol K^ξ such that K^±ξ0=0, Im K^ξ=0, and K^ξ≤C. For example, we can take K^ξ=ξ2-ξ02/ξ2+1. We p...

Full description

Bibliographic Details
Main Authors: Fernando Bernal-Vílchis, Nakao Hayashi, Pavel I. Naumkin
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2017/3879017
Description
Summary:We consider the Cauchy problem for the Ostrovsky-Hunter equation ∂x∂tu-b/3∂x3u-∂xKu3=au, t,x∈R2,  u0,x=u0x, x∈R, where ab>0. Define ξ0=27a/b1/4. Suppose that K is a pseudodifferential operator with a symbol K^ξ such that K^±ξ0=0, Im K^ξ=0, and K^ξ≤C. For example, we can take K^ξ=ξ2-ξ02/ξ2+1. We prove the global in time existence and the large time asymptotic behavior of solutions.
ISSN:1687-9643
1687-9651