A Semianalytical Approach to the Solution of Time-Fractional Navier-Stokes Equation

In this manuscript, a semianalytical solution of the time-fractional Navier-Stokes equation under Caputo fractional derivatives using Optimal Homotopy Asymptotic Method (OHAM) is proposed. The above-mentioned technique produces an accurate approximation of the desired solutions and hence is known as...

Full description

Bibliographic Details
Main Authors: Zeeshan Ali, Shayan Naseri Nia, Faranak Rabiei, Kamal Shah, Ming Kwang Tan
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2021/5547804
Description
Summary:In this manuscript, a semianalytical solution of the time-fractional Navier-Stokes equation under Caputo fractional derivatives using Optimal Homotopy Asymptotic Method (OHAM) is proposed. The above-mentioned technique produces an accurate approximation of the desired solutions and hence is known as the semianalytical approach. The main advantage of OHAM is that it does not require any small perturbations, linearization, or discretization and many reductions of the computations. Here, the proposed approach’s reliability and efficiency are demonstrated by two applications of one-dimensional motion of a viscous fluid in a tube governed by the flow field by converting them to time-fractional Navier-Stokes equations in cylindrical coordinates using fractional derivatives in the sense of Caputo. For the first problem, OHAM provides the exact solution, and for the second problem, it performs a highly accurate numerical approximation of the solution compare with the exact solution. The presented simulation results of OHAM comparison with analytical and numerical approaches reveal that the method is an efficient technique to simulate the solution of time-fractional types of Navier-Stokes equation.
ISSN:1687-9139