Extended Distributed State Estimation: A Detection Method against Tolerable False Data Injection Attacks in Smart Grids
False data injection (FDI) is considered to be one of the most dangerous cyber-attacks in smart grids, as it may lead to energy theft from end users, false dispatch in the distribution process, and device breakdown during power generation. In this paper, a novel kind of FDI attack, named tolerable f...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2014-03-01
|
Series: | Energies |
Subjects: | |
Online Access: | http://www.mdpi.com/1996-1073/7/3/1517 |
id |
doaj-d71923d80c5c497ca533e21f46ca4fab |
---|---|
record_format |
Article |
spelling |
doaj-d71923d80c5c497ca533e21f46ca4fab2020-11-24T20:54:50ZengMDPI AGEnergies1996-10732014-03-01731517153810.3390/en7031517en7031517Extended Distributed State Estimation: A Detection Method against Tolerable False Data Injection Attacks in Smart GridsDai Wang0Xiaohong Guan1Ting Liu2Yun Gu3Chao Shen4Zhanbo Xu5Systems Engineering Institute, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, ChinaSystems Engineering Institute, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, ChinaSystems Engineering Institute, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, ChinaSystems Engineering Institute, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, ChinaSystems Engineering Institute, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, ChinaSystems Engineering Institute, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, ChinaFalse data injection (FDI) is considered to be one of the most dangerous cyber-attacks in smart grids, as it may lead to energy theft from end users, false dispatch in the distribution process, and device breakdown during power generation. In this paper, a novel kind of FDI attack, named tolerable false data injection (TFDI), is constructed. Such attacks exploit the traditional detector’s tolerance of observation errors to bypass the traditional bad data detection. Then, a method based on extended distributed state estimation (EDSE) is proposed to detect TFDI in smart grids. The smart grid is decomposed into several subsystems, exploiting graph partition algorithms. Each subsystem is extended outward to include the adjacent buses and tie lines, and generate the extended subsystem. The Chi-squares test is applied to detect the false data in each extended subsystem. Through decomposition, the false data stands out distinctively from normal observation errors and the detection sensitivity is increased. Extensive TFDI attack cases are simulated in the Institute of Electrical and Electronics Engineers (IEEE) 14-, 39-, 118- and 300-bus systems. Simulation results show that the detection precision of the EDSE-based method is much higher than that of the traditional method, while the proposed method significantly reduces the associated computational costs.http://www.mdpi.com/1996-1073/7/3/1517smart gridssecurityfalse data injection (FDI)bad data detectionextended distributed state estimation (EDSE) |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dai Wang Xiaohong Guan Ting Liu Yun Gu Chao Shen Zhanbo Xu |
spellingShingle |
Dai Wang Xiaohong Guan Ting Liu Yun Gu Chao Shen Zhanbo Xu Extended Distributed State Estimation: A Detection Method against Tolerable False Data Injection Attacks in Smart Grids Energies smart grids security false data injection (FDI) bad data detection extended distributed state estimation (EDSE) |
author_facet |
Dai Wang Xiaohong Guan Ting Liu Yun Gu Chao Shen Zhanbo Xu |
author_sort |
Dai Wang |
title |
Extended Distributed State Estimation: A Detection Method against Tolerable False Data Injection Attacks in Smart Grids |
title_short |
Extended Distributed State Estimation: A Detection Method against Tolerable False Data Injection Attacks in Smart Grids |
title_full |
Extended Distributed State Estimation: A Detection Method against Tolerable False Data Injection Attacks in Smart Grids |
title_fullStr |
Extended Distributed State Estimation: A Detection Method against Tolerable False Data Injection Attacks in Smart Grids |
title_full_unstemmed |
Extended Distributed State Estimation: A Detection Method against Tolerable False Data Injection Attacks in Smart Grids |
title_sort |
extended distributed state estimation: a detection method against tolerable false data injection attacks in smart grids |
publisher |
MDPI AG |
series |
Energies |
issn |
1996-1073 |
publishDate |
2014-03-01 |
description |
False data injection (FDI) is considered to be one of the most dangerous cyber-attacks in smart grids, as it may lead to energy theft from end users, false dispatch in the distribution process, and device breakdown during power generation. In this paper, a novel kind of FDI attack, named tolerable false data injection (TFDI), is constructed. Such attacks exploit the traditional detector’s tolerance of observation errors to bypass the traditional bad data detection. Then, a method based on extended distributed state estimation (EDSE) is proposed to detect TFDI in smart grids. The smart grid is decomposed into several subsystems, exploiting graph partition algorithms. Each subsystem is extended outward to include the adjacent buses and tie lines, and generate the extended subsystem. The Chi-squares test is applied to detect the false data in each extended subsystem. Through decomposition, the false data stands out distinctively from normal observation errors and the detection sensitivity is increased. Extensive TFDI attack cases are simulated in the Institute of Electrical and Electronics Engineers (IEEE) 14-, 39-, 118- and 300-bus systems. Simulation results show that the detection precision of the EDSE-based method is much higher than that of the traditional method, while the proposed method significantly reduces the associated computational costs. |
topic |
smart grids security false data injection (FDI) bad data detection extended distributed state estimation (EDSE) |
url |
http://www.mdpi.com/1996-1073/7/3/1517 |
work_keys_str_mv |
AT daiwang extendeddistributedstateestimationadetectionmethodagainsttolerablefalsedatainjectionattacksinsmartgrids AT xiaohongguan extendeddistributedstateestimationadetectionmethodagainsttolerablefalsedatainjectionattacksinsmartgrids AT tingliu extendeddistributedstateestimationadetectionmethodagainsttolerablefalsedatainjectionattacksinsmartgrids AT yungu extendeddistributedstateestimationadetectionmethodagainsttolerablefalsedatainjectionattacksinsmartgrids AT chaoshen extendeddistributedstateestimationadetectionmethodagainsttolerablefalsedatainjectionattacksinsmartgrids AT zhanboxu extendeddistributedstateestimationadetectionmethodagainsttolerablefalsedatainjectionattacksinsmartgrids |
_version_ |
1716793548255264768 |