Assessing Redox Properties of Natural Organic Matters with regard to Electron Exchange Capacity and Redox-Active Functional Groups
Redox processes in groundwater play an important role in bioavailability, toxicity, and mobility of redox-active elements and contaminants. A recent study has demonstrated that low-molecular-weight fraction (LMWF) of humic substances with great number of redox-active functional groups (RAFGs) exhibi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Journal of Chemistry |
Online Access: | http://dx.doi.org/10.1155/2020/2698213 |
id |
doaj-d716f103315c4b4e9888d2a4b8bf7609 |
---|---|
record_format |
Article |
spelling |
doaj-d716f103315c4b4e9888d2a4b8bf76092020-11-25T02:23:40ZengHindawi LimitedJournal of Chemistry2090-90632090-90712020-01-01202010.1155/2020/26982132698213Assessing Redox Properties of Natural Organic Matters with regard to Electron Exchange Capacity and Redox-Active Functional GroupsZhiyuan Xu0Zhen Yang1Hongping Wang2Jie Jiang3Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, ChinaGeomicrobiology, Center for Applied Geoscience, University of Tuebingen, Tuebingen 72076, GermanyBeijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, ChinaBeijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, ChinaRedox processes in groundwater play an important role in bioavailability, toxicity, and mobility of redox-active elements and contaminants. A recent study has demonstrated that low-molecular-weight fraction (LMWF) of humic substances with great number of redox-active functional groups (RAFGs) exhibits great reducing capacity. However, whether LMWF of natural organic matter (NOM) exhibits high redox capacity still remains unclear. Therefore, this study extracted Pahokee peat NOM (PPNOM) and Leonardite NOM (LNOM) from soils, and then LMWFs in these NOMs were collected using a dialysis method. Electron exchange capacities (EEC) and RAFGs of LMWF NOMs at different Eh were analyzed using a novel electrochemical method and a three-dimensional excitation emission fluorescence (3DEEM) spectroscopy. We found that the reducing capacity in LMWF PPNOM was approximately 5-6 times higher than the bulk NOM, while only 7.8% LMWF PPNOM was accounted for in the bulk NOM. An increasing in EEC (EAC + EDC, where EAC is the electron accepting capacity and EDC is the electron donating capacity) of LMWF PPNOM and LNOM with Eh reduced from −0.49 V to −0.69 V. Additionally, an obvious increase in fluorescent intensities of quinone-like fluorophores before and after being reduced LMWF LNOM is responsible for high EAC of LMWF LNOM. These findings provide a better understanding of relationship between RAFGs Eh in LMWF of NOM, further helping in predicting and protection of groundwater environment and fate of transformation and transport for redox-active contaminants in groundwater.http://dx.doi.org/10.1155/2020/2698213 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhiyuan Xu Zhen Yang Hongping Wang Jie Jiang |
spellingShingle |
Zhiyuan Xu Zhen Yang Hongping Wang Jie Jiang Assessing Redox Properties of Natural Organic Matters with regard to Electron Exchange Capacity and Redox-Active Functional Groups Journal of Chemistry |
author_facet |
Zhiyuan Xu Zhen Yang Hongping Wang Jie Jiang |
author_sort |
Zhiyuan Xu |
title |
Assessing Redox Properties of Natural Organic Matters with regard to Electron Exchange Capacity and Redox-Active Functional Groups |
title_short |
Assessing Redox Properties of Natural Organic Matters with regard to Electron Exchange Capacity and Redox-Active Functional Groups |
title_full |
Assessing Redox Properties of Natural Organic Matters with regard to Electron Exchange Capacity and Redox-Active Functional Groups |
title_fullStr |
Assessing Redox Properties of Natural Organic Matters with regard to Electron Exchange Capacity and Redox-Active Functional Groups |
title_full_unstemmed |
Assessing Redox Properties of Natural Organic Matters with regard to Electron Exchange Capacity and Redox-Active Functional Groups |
title_sort |
assessing redox properties of natural organic matters with regard to electron exchange capacity and redox-active functional groups |
publisher |
Hindawi Limited |
series |
Journal of Chemistry |
issn |
2090-9063 2090-9071 |
publishDate |
2020-01-01 |
description |
Redox processes in groundwater play an important role in bioavailability, toxicity, and mobility of redox-active elements and contaminants. A recent study has demonstrated that low-molecular-weight fraction (LMWF) of humic substances with great number of redox-active functional groups (RAFGs) exhibits great reducing capacity. However, whether LMWF of natural organic matter (NOM) exhibits high redox capacity still remains unclear. Therefore, this study extracted Pahokee peat NOM (PPNOM) and Leonardite NOM (LNOM) from soils, and then LMWFs in these NOMs were collected using a dialysis method. Electron exchange capacities (EEC) and RAFGs of LMWF NOMs at different Eh were analyzed using a novel electrochemical method and a three-dimensional excitation emission fluorescence (3DEEM) spectroscopy. We found that the reducing capacity in LMWF PPNOM was approximately 5-6 times higher than the bulk NOM, while only 7.8% LMWF PPNOM was accounted for in the bulk NOM. An increasing in EEC (EAC + EDC, where EAC is the electron accepting capacity and EDC is the electron donating capacity) of LMWF PPNOM and LNOM with Eh reduced from −0.49 V to −0.69 V. Additionally, an obvious increase in fluorescent intensities of quinone-like fluorophores before and after being reduced LMWF LNOM is responsible for high EAC of LMWF LNOM. These findings provide a better understanding of relationship between RAFGs Eh in LMWF of NOM, further helping in predicting and protection of groundwater environment and fate of transformation and transport for redox-active contaminants in groundwater. |
url |
http://dx.doi.org/10.1155/2020/2698213 |
work_keys_str_mv |
AT zhiyuanxu assessingredoxpropertiesofnaturalorganicmatterswithregardtoelectronexchangecapacityandredoxactivefunctionalgroups AT zhenyang assessingredoxpropertiesofnaturalorganicmatterswithregardtoelectronexchangecapacityandredoxactivefunctionalgroups AT hongpingwang assessingredoxpropertiesofnaturalorganicmatterswithregardtoelectronexchangecapacityandredoxactivefunctionalgroups AT jiejiang assessingredoxpropertiesofnaturalorganicmatterswithregardtoelectronexchangecapacityandredoxactivefunctionalgroups |
_version_ |
1715496609121304576 |