Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data

There is a growing interest for scientists and society to acquire deep knowledge on the impacts from environmental disasters. The present work deals with the investigation of vegetation dynamics in the Chernobyl area, a place widely known for the devastating nuclear disaster on the 26th of April 198...

Full description

Bibliographic Details
Main Author: Alexandra Gemitzi
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Land
Subjects:
Online Access:https://www.mdpi.com/2073-445X/9/11/433
id doaj-d71612a06b584766be427cd28dafdb33
record_format Article
spelling doaj-d71612a06b584766be427cd28dafdb332020-11-25T03:58:16ZengMDPI AGLand2073-445X2020-11-01943343310.3390/land9110433Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover DataAlexandra Gemitzi0Department of Environmental Engineering, Democritus University of Thrace, 67100 Xanthi, GreeceThere is a growing interest for scientists and society to acquire deep knowledge on the impacts from environmental disasters. The present work deals with the investigation of vegetation dynamics in the Chernobyl area, a place widely known for the devastating nuclear disaster on the 26th of April 1986. To unveil any possible long-term radiation effects on vegetation phenology, the remotely sensed normalized difference vegetation index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) was analyzed within the 30 km Exclusion Zone, where all human activities were ceased at that time and public access and inhabitation have been prohibited ever since. The analysis comprised applications of seasonal trend analysis using two techniques, i.e., pixel-wise NDVI time series and spatially averaged NDVI time series. Both techniques were applied in each one of the individual land cover types. To assess the existence of abnormal vegetation dynamics, the same analyses were conducted in two broader zones, i.e., from 30 to 60 km and from 60 to 90 km, away from Chernobyl area, where human activities were not substantially altered. Results of both analyses indicated that vegetation dynamics in the 30 km Exclusion Zone correspond to increasing plant productivity at a rate considerably higher than that of the other two examined zones. The outcome of the analyses presented herein attributes greening trends in the 30 km and the 30 to 60 km zones to a combination of climate, minimized human impact and a consequent prevalence of land cover types which seem to be well adapted to increased radioactivity. The vegetation greening trends observed in the third zone, i.e., the 90 km zone, are indicative of the combination of climate and increasing human activities. Results indicate the positive impact from the absence of human activities on vegetation dynamics as far as vegetation productivity and phenology are concerned in the 30 km Exclusion Zone, and to a lower extent in the 60 km zone. Furthermore, there is evidence that land cover changes evolve into the prevalence of woody vegetation in an area with increased levels of radioactivity.https://www.mdpi.com/2073-445X/9/11/433NDVI trendvegetation productivityvegetation dynamicsMODIS land productsChernobyleffects of radiation on plants
collection DOAJ
language English
format Article
sources DOAJ
author Alexandra Gemitzi
spellingShingle Alexandra Gemitzi
Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data
Land
NDVI trend
vegetation productivity
vegetation dynamics
MODIS land products
Chernobyl
effects of radiation on plants
author_facet Alexandra Gemitzi
author_sort Alexandra Gemitzi
title Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data
title_short Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data
title_full Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data
title_fullStr Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data
title_full_unstemmed Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data
title_sort are vegetation dynamics impacted from a nuclear disaster? the case of chernobyl using remotely sensed ndvi and land cover data
publisher MDPI AG
series Land
issn 2073-445X
publishDate 2020-11-01
description There is a growing interest for scientists and society to acquire deep knowledge on the impacts from environmental disasters. The present work deals with the investigation of vegetation dynamics in the Chernobyl area, a place widely known for the devastating nuclear disaster on the 26th of April 1986. To unveil any possible long-term radiation effects on vegetation phenology, the remotely sensed normalized difference vegetation index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) was analyzed within the 30 km Exclusion Zone, where all human activities were ceased at that time and public access and inhabitation have been prohibited ever since. The analysis comprised applications of seasonal trend analysis using two techniques, i.e., pixel-wise NDVI time series and spatially averaged NDVI time series. Both techniques were applied in each one of the individual land cover types. To assess the existence of abnormal vegetation dynamics, the same analyses were conducted in two broader zones, i.e., from 30 to 60 km and from 60 to 90 km, away from Chernobyl area, where human activities were not substantially altered. Results of both analyses indicated that vegetation dynamics in the 30 km Exclusion Zone correspond to increasing plant productivity at a rate considerably higher than that of the other two examined zones. The outcome of the analyses presented herein attributes greening trends in the 30 km and the 30 to 60 km zones to a combination of climate, minimized human impact and a consequent prevalence of land cover types which seem to be well adapted to increased radioactivity. The vegetation greening trends observed in the third zone, i.e., the 90 km zone, are indicative of the combination of climate and increasing human activities. Results indicate the positive impact from the absence of human activities on vegetation dynamics as far as vegetation productivity and phenology are concerned in the 30 km Exclusion Zone, and to a lower extent in the 60 km zone. Furthermore, there is evidence that land cover changes evolve into the prevalence of woody vegetation in an area with increased levels of radioactivity.
topic NDVI trend
vegetation productivity
vegetation dynamics
MODIS land products
Chernobyl
effects of radiation on plants
url https://www.mdpi.com/2073-445X/9/11/433
work_keys_str_mv AT alexandragemitzi arevegetationdynamicsimpactedfromanucleardisasterthecaseofchernobylusingremotelysensedndviandlandcoverdata
_version_ 1724458279600390144