Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.)
Abstract Background The investigation of transcriptome profiles using short reads in non-model organisms, which lack of well-annotated genomes, is limited by partial gene reconstruction and isoform detection. In contrast, long-reads sequencing techniques revealed their potential to generate complete...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-08-01
|
Series: | BMC Genomics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12864-020-6670-5 |
id |
doaj-d7139f4d1f4742a5ba5d4c25c5ba5cca |
---|---|
record_format |
Article |
spelling |
doaj-d7139f4d1f4742a5ba5d4c25c5ba5cca2020-11-25T03:40:51ZengBMCBMC Genomics1471-21642020-08-0121111710.1186/s12864-020-6670-5Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.)Giuseppe D. Puglia0Andrey D. Prjibelski1Domenico Vitale2Elena Bushmanova3Karl J. Schmid4Salvatore A. Raccuia5Institute for Plant Breeding, Seed Science and Population Genetics, University of HohenheimCenter for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State UniversityConsiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. CataniaCenter for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State UniversityInstitute for Plant Breeding, Seed Science and Population Genetics, University of HohenheimConsiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. CataniaAbstract Background The investigation of transcriptome profiles using short reads in non-model organisms, which lack of well-annotated genomes, is limited by partial gene reconstruction and isoform detection. In contrast, long-reads sequencing techniques revealed their potential to generate complete transcript assemblies even when a reference genome is lacking. Cynara cardunculus var. altilis (DC) (cultivated cardoon) is a perennial hardy crop adapted to dry environments with many industrial and nutraceutical applications due to the richness of secondary metabolites mostly produced in flower heads. The investigation of this species benefited from the recent release of a draft genome, but the transcriptome profile during the capitula formation still remains unexplored. In the present study we show a transcriptome analysis of vegetative and inflorescence organs of cultivated cardoon through a novel hybrid RNA-seq assembly approach utilizing both long and short RNA-seq reads. Results The inclusion of a single Nanopore flow-cell output in a hybrid sequencing approach determined an increase of 15% complete assembled genes and 18% transcript isoforms respect to short reads alone. Among 25,463 assembled unigenes, we identified 578 new genes and updated 13,039 gene models, 11,169 of which were alternatively spliced isoforms. During capitulum development, 3424 genes were differentially expressed and approximately two-thirds were identified as transcription factors including bHLH, MYB, NAC, C2H2 and MADS-box which were highly expressed especially after capitulum opening. We also show the expression dynamics of key genes involved in the production of valuable secondary metabolites of which capitulum is rich such as phenylpropanoids, flavonoids and sesquiterpene lactones. Most of their biosynthetic genes were strongly transcribed in the flower heads with alternative isoforms exhibiting differentially expression levels across the tissues. Conclusions This novel hybrid sequencing approach allowed to improve the transcriptome assembly, to update more than half of annotated genes and to identify many novel genes and different alternatively spliced isoforms. This study provides new insights on the flowering cycle in an Asteraceae plant, a valuable resource for plant biology and breeding in Cynara and an effective method for improving gene annotation.http://link.springer.com/article/10.1186/s12864-020-6670-5Hybrid-seqRNA-seqde novo transcriptome assemblyCynara cardunculusInflorescence developmentAlternatively spliced isoforms |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Giuseppe D. Puglia Andrey D. Prjibelski Domenico Vitale Elena Bushmanova Karl J. Schmid Salvatore A. Raccuia |
spellingShingle |
Giuseppe D. Puglia Andrey D. Prjibelski Domenico Vitale Elena Bushmanova Karl J. Schmid Salvatore A. Raccuia Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.) BMC Genomics Hybrid-seq RNA-seq de novo transcriptome assembly Cynara cardunculus Inflorescence development Alternatively spliced isoforms |
author_facet |
Giuseppe D. Puglia Andrey D. Prjibelski Domenico Vitale Elena Bushmanova Karl J. Schmid Salvatore A. Raccuia |
author_sort |
Giuseppe D. Puglia |
title |
Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.) |
title_short |
Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.) |
title_full |
Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.) |
title_fullStr |
Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.) |
title_full_unstemmed |
Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.) |
title_sort |
hybrid transcriptome sequencing approach improved assembly and gene annotation in cynara cardunculus (l.) |
publisher |
BMC |
series |
BMC Genomics |
issn |
1471-2164 |
publishDate |
2020-08-01 |
description |
Abstract Background The investigation of transcriptome profiles using short reads in non-model organisms, which lack of well-annotated genomes, is limited by partial gene reconstruction and isoform detection. In contrast, long-reads sequencing techniques revealed their potential to generate complete transcript assemblies even when a reference genome is lacking. Cynara cardunculus var. altilis (DC) (cultivated cardoon) is a perennial hardy crop adapted to dry environments with many industrial and nutraceutical applications due to the richness of secondary metabolites mostly produced in flower heads. The investigation of this species benefited from the recent release of a draft genome, but the transcriptome profile during the capitula formation still remains unexplored. In the present study we show a transcriptome analysis of vegetative and inflorescence organs of cultivated cardoon through a novel hybrid RNA-seq assembly approach utilizing both long and short RNA-seq reads. Results The inclusion of a single Nanopore flow-cell output in a hybrid sequencing approach determined an increase of 15% complete assembled genes and 18% transcript isoforms respect to short reads alone. Among 25,463 assembled unigenes, we identified 578 new genes and updated 13,039 gene models, 11,169 of which were alternatively spliced isoforms. During capitulum development, 3424 genes were differentially expressed and approximately two-thirds were identified as transcription factors including bHLH, MYB, NAC, C2H2 and MADS-box which were highly expressed especially after capitulum opening. We also show the expression dynamics of key genes involved in the production of valuable secondary metabolites of which capitulum is rich such as phenylpropanoids, flavonoids and sesquiterpene lactones. Most of their biosynthetic genes were strongly transcribed in the flower heads with alternative isoforms exhibiting differentially expression levels across the tissues. Conclusions This novel hybrid sequencing approach allowed to improve the transcriptome assembly, to update more than half of annotated genes and to identify many novel genes and different alternatively spliced isoforms. This study provides new insights on the flowering cycle in an Asteraceae plant, a valuable resource for plant biology and breeding in Cynara and an effective method for improving gene annotation. |
topic |
Hybrid-seq RNA-seq de novo transcriptome assembly Cynara cardunculus Inflorescence development Alternatively spliced isoforms |
url |
http://link.springer.com/article/10.1186/s12864-020-6670-5 |
work_keys_str_mv |
AT giuseppedpuglia hybridtranscriptomesequencingapproachimprovedassemblyandgeneannotationincynaracardunculusl AT andreydprjibelski hybridtranscriptomesequencingapproachimprovedassemblyandgeneannotationincynaracardunculusl AT domenicovitale hybridtranscriptomesequencingapproachimprovedassemblyandgeneannotationincynaracardunculusl AT elenabushmanova hybridtranscriptomesequencingapproachimprovedassemblyandgeneannotationincynaracardunculusl AT karljschmid hybridtranscriptomesequencingapproachimprovedassemblyandgeneannotationincynaracardunculusl AT salvatorearaccuia hybridtranscriptomesequencingapproachimprovedassemblyandgeneannotationincynaracardunculusl |
_version_ |
1724532530359566336 |