Summary: | The renin-angiotensin aldosterone system is a critical mechanism for controlling blood pressure, and exerts most of its physiological effects through the action of angiotensin II. In addition to increasing blood pressure by increasing vascular resistance, angiotensin II also stimulates aldosterone secretion from the adrenal gland. Aldosterone acts to cause an increase in sodium and water reabsorption, thus elevating blood pressure. Although treatment with angiotensin converting enzyme inhibitors initially lowers circulating aldosterone, with chronic treatment aldosterone levels increase back to baseline, a phenomenon termed aldosterone escape; aldosterone blockade may therefore give added value in the treatment of hypertension. The first mineralocorticoid receptor antagonist developed was spironolactone, but its use has been severely hampered by adverse (notably oestrogenic) effects. The more recently developed mineralocorticoid receptor antagonist eplerenone exhibits a better adverse effect profile, although it is not devoid of effects similar to spironolactone. In addition, aldosterone activates non-genomic receptors that are not inhibited by either eplerenone or spironolactone. It is believed that deleterious organ remodelling is mediated by aldosterone via such non-genomic pathways. A new class of drugs, the aldosterone synthase inhibitors, is currently under development. These may offer a novel therapeutic approach for both lowering blood pressure and preventing the non-genomic effects of aldosterone. Here, we will review the cardiovascular effects of aldosterone and review the drugs available that target this hormone, with a particular focus on the aldosterone synthase inhibitors.
|