On the existence and properties of three types of solutions of singular IVPs
The paper studies the singular initial value problem $$ (p(t)u'(t))' + q(t)f(u(t))=0, \qquad t>0, \qquad u(0)=u_0\in [L_0,L], \qquad u'(0)=0. $$ Here, $f\in C(\mathbb{R})$, $f(L_0)=f(0)=f(L)=0$, $L_0 < 0 < L$ and $xf(x)>0$ for $x\in (L_0,0) \cup (0,L)$. Further, $p,q\in C...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2015-05-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3714 |
id |
doaj-d70facab88b54c749cb308df5c1e17fb |
---|---|
record_format |
Article |
spelling |
doaj-d70facab88b54c749cb308df5c1e17fb2021-07-14T07:21:27ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752015-05-0120152912510.14232/ejqtde.2015.1.293714On the existence and properties of three types of solutions of singular IVPsJana Burkotová0Martin Rohleder1Jakub Stryja2Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech RepublicDepartment of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech RepublicDepartment of Mathematics and Descriptive Geometry, VŠB - Technical University Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech RepublicThe paper studies the singular initial value problem $$ (p(t)u'(t))' + q(t)f(u(t))=0, \qquad t>0, \qquad u(0)=u_0\in [L_0,L], \qquad u'(0)=0. $$ Here, $f\in C(\mathbb{R})$, $f(L_0)=f(0)=f(L)=0$, $L_0 < 0 < L$ and $xf(x)>0$ for $x\in (L_0,0) \cup (0,L)$. Further, $p,q\in C[0,\infty)$ are positive on $(0,\infty)$ and $p(0)=0$. The integral $\int_0^1 \frac{\mathrm{d}{s}}{p(s)}$ may be divergent which yields the time singularity at $t=0$. The paper describes a set of all solutions of the given problem. Existence results and properties of oscillatory solutions and increasing solutions are derived. By means of these results, the existence of an increasing solution with $u(\infty)=L$ (a homoclinic solution) playing an important role in applications, is proved.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3714second order ode; time singularity; asymptotic properties; damped oscillatory solution; escape solution; homoclinic solution; unbounded domain. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jana Burkotová Martin Rohleder Jakub Stryja |
spellingShingle |
Jana Burkotová Martin Rohleder Jakub Stryja On the existence and properties of three types of solutions of singular IVPs Electronic Journal of Qualitative Theory of Differential Equations second order ode; time singularity; asymptotic properties; damped oscillatory solution; escape solution; homoclinic solution; unbounded domain. |
author_facet |
Jana Burkotová Martin Rohleder Jakub Stryja |
author_sort |
Jana Burkotová |
title |
On the existence and properties of three types of solutions of singular IVPs |
title_short |
On the existence and properties of three types of solutions of singular IVPs |
title_full |
On the existence and properties of three types of solutions of singular IVPs |
title_fullStr |
On the existence and properties of three types of solutions of singular IVPs |
title_full_unstemmed |
On the existence and properties of three types of solutions of singular IVPs |
title_sort |
on the existence and properties of three types of solutions of singular ivps |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2015-05-01 |
description |
The paper studies the singular initial value problem
$$
(p(t)u'(t))' + q(t)f(u(t))=0, \qquad t>0, \qquad u(0)=u_0\in [L_0,L], \qquad u'(0)=0.
$$
Here, $f\in C(\mathbb{R})$, $f(L_0)=f(0)=f(L)=0$, $L_0 < 0 < L$ and $xf(x)>0$ for $x\in (L_0,0) \cup (0,L)$. Further, $p,q\in C[0,\infty)$ are positive on $(0,\infty)$ and $p(0)=0$. The integral $\int_0^1 \frac{\mathrm{d}{s}}{p(s)}$ may be divergent which yields the time singularity at $t=0$. The paper describes a set of all solutions of the given problem. Existence results and properties of oscillatory solutions and increasing solutions are derived. By means of these results, the existence of an increasing solution with $u(\infty)=L$ (a homoclinic solution) playing an important role in applications, is proved. |
topic |
second order ode; time singularity; asymptotic properties; damped oscillatory solution; escape solution; homoclinic solution; unbounded domain. |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3714 |
work_keys_str_mv |
AT janaburkotova ontheexistenceandpropertiesofthreetypesofsolutionsofsingularivps AT martinrohleder ontheexistenceandpropertiesofthreetypesofsolutionsofsingularivps AT jakubstryja ontheexistenceandpropertiesofthreetypesofsolutionsofsingularivps |
_version_ |
1721303645874552832 |