On the existence and properties of three types of solutions of singular IVPs

The paper studies the singular initial value problem $$ (p(t)u'(t))' + q(t)f(u(t))=0, \qquad t>0, \qquad u(0)=u_0\in [L_0,L], \qquad u'(0)=0. $$ Here, $f\in C(\mathbb{R})$, $f(L_0)=f(0)=f(L)=0$, $L_0 < 0 < L$ and $xf(x)>0$ for $x\in (L_0,0) \cup (0,L)$. Further, $p,q\in C...

Full description

Bibliographic Details
Main Authors: Jana Burkotová, Martin Rohleder, Jakub Stryja
Format: Article
Language:English
Published: University of Szeged 2015-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3714
id doaj-d70facab88b54c749cb308df5c1e17fb
record_format Article
spelling doaj-d70facab88b54c749cb308df5c1e17fb2021-07-14T07:21:27ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752015-05-0120152912510.14232/ejqtde.2015.1.293714On the existence and properties of three types of solutions of singular IVPsJana Burkotová0Martin Rohleder1Jakub Stryja2Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech RepublicDepartment of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech RepublicDepartment of Mathematics and Descriptive Geometry, VŠB - Technical University Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech RepublicThe paper studies the singular initial value problem $$ (p(t)u'(t))' + q(t)f(u(t))=0, \qquad t>0, \qquad u(0)=u_0\in [L_0,L], \qquad u'(0)=0. $$ Here, $f\in C(\mathbb{R})$, $f(L_0)=f(0)=f(L)=0$, $L_0 < 0 < L$ and $xf(x)>0$ for $x\in (L_0,0) \cup (0,L)$. Further, $p,q\in C[0,\infty)$ are positive on $(0,\infty)$ and $p(0)=0$. The integral $\int_0^1 \frac{\mathrm{d}{s}}{p(s)}$ may be divergent which yields the time singularity at $t=0$. The paper describes a set of all solutions of the given problem. Existence results and properties of oscillatory solutions and increasing solutions are derived. By means of these results, the existence of an increasing solution with $u(\infty)=L$ (a homoclinic solution) playing an important role in applications, is proved.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3714second order ode; time singularity; asymptotic properties; damped oscillatory solution; escape solution; homoclinic solution; unbounded domain.
collection DOAJ
language English
format Article
sources DOAJ
author Jana Burkotová
Martin Rohleder
Jakub Stryja
spellingShingle Jana Burkotová
Martin Rohleder
Jakub Stryja
On the existence and properties of three types of solutions of singular IVPs
Electronic Journal of Qualitative Theory of Differential Equations
second order ode; time singularity; asymptotic properties; damped oscillatory solution; escape solution; homoclinic solution; unbounded domain.
author_facet Jana Burkotová
Martin Rohleder
Jakub Stryja
author_sort Jana Burkotová
title On the existence and properties of three types of solutions of singular IVPs
title_short On the existence and properties of three types of solutions of singular IVPs
title_full On the existence and properties of three types of solutions of singular IVPs
title_fullStr On the existence and properties of three types of solutions of singular IVPs
title_full_unstemmed On the existence and properties of three types of solutions of singular IVPs
title_sort on the existence and properties of three types of solutions of singular ivps
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2015-05-01
description The paper studies the singular initial value problem $$ (p(t)u'(t))' + q(t)f(u(t))=0, \qquad t>0, \qquad u(0)=u_0\in [L_0,L], \qquad u'(0)=0. $$ Here, $f\in C(\mathbb{R})$, $f(L_0)=f(0)=f(L)=0$, $L_0 < 0 < L$ and $xf(x)>0$ for $x\in (L_0,0) \cup (0,L)$. Further, $p,q\in C[0,\infty)$ are positive on $(0,\infty)$ and $p(0)=0$. The integral $\int_0^1 \frac{\mathrm{d}{s}}{p(s)}$ may be divergent which yields the time singularity at $t=0$. The paper describes a set of all solutions of the given problem. Existence results and properties of oscillatory solutions and increasing solutions are derived. By means of these results, the existence of an increasing solution with $u(\infty)=L$ (a homoclinic solution) playing an important role in applications, is proved.
topic second order ode; time singularity; asymptotic properties; damped oscillatory solution; escape solution; homoclinic solution; unbounded domain.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3714
work_keys_str_mv AT janaburkotova ontheexistenceandpropertiesofthreetypesofsolutionsofsingularivps
AT martinrohleder ontheexistenceandpropertiesofthreetypesofsolutionsofsingularivps
AT jakubstryja ontheexistenceandpropertiesofthreetypesofsolutionsofsingularivps
_version_ 1721303645874552832