On the existence and properties of three types of solutions of singular IVPs

The paper studies the singular initial value problem $$ (p(t)u'(t))' + q(t)f(u(t))=0, \qquad t>0, \qquad u(0)=u_0\in [L_0,L], \qquad u'(0)=0. $$ Here, $f\in C(\mathbb{R})$, $f(L_0)=f(0)=f(L)=0$, $L_0 < 0 < L$ and $xf(x)>0$ for $x\in (L_0,0) \cup (0,L)$. Further, $p,q\in C...

Full description

Bibliographic Details
Main Authors: Jana Burkotová, Martin Rohleder, Jakub Stryja
Format: Article
Language:English
Published: University of Szeged 2015-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3714
Description
Summary:The paper studies the singular initial value problem $$ (p(t)u'(t))' + q(t)f(u(t))=0, \qquad t>0, \qquad u(0)=u_0\in [L_0,L], \qquad u'(0)=0. $$ Here, $f\in C(\mathbb{R})$, $f(L_0)=f(0)=f(L)=0$, $L_0 < 0 < L$ and $xf(x)>0$ for $x\in (L_0,0) \cup (0,L)$. Further, $p,q\in C[0,\infty)$ are positive on $(0,\infty)$ and $p(0)=0$. The integral $\int_0^1 \frac{\mathrm{d}{s}}{p(s)}$ may be divergent which yields the time singularity at $t=0$. The paper describes a set of all solutions of the given problem. Existence results and properties of oscillatory solutions and increasing solutions are derived. By means of these results, the existence of an increasing solution with $u(\infty)=L$ (a homoclinic solution) playing an important role in applications, is proved.
ISSN:1417-3875
1417-3875